In the present work, the adsorption of sulfate and fluoride by two oxisols was studied, and during the adsorption OH- released from soils were measured and the change in surface charge carried by one of the soils afte...In the present work, the adsorption of sulfate and fluoride by two oxisols was studied, and during the adsorption OH- released from soils were measured and the change in surface charge carried by one of the soils after the adsorption of fluoride was examined. The results show that the adsorption of sulfate by oxisols and the release of OH- from oxisols both increased with the increase of sulfate added at a constant pH, but decreased when pH became higher gradually. The adsorption and release both decreased markedly after removal of iron oxide. The ratio of OH- to SO42- for Fe-removed soils decreased to 15-34% of the original soils. These results suggest that iron oxide was the chief carrier of hydroxyl groups capable of ligand exchange with sulfate in oxisols.Compared with sulfate, however, the amount of fluoride adsorbed, OH- released during the adsorption of fluoride and the ratio of OH- to F- were much larger. The effect of iron oxide on the adsorption of fluoride by oxisols was smaller than that on the adsorption of sulfate. The ratios of OH- to F- for an oxisol from Brazil were 0.62 and 0.48 respectively before and after removal of free iron oxides. This implied that iron oxide only provided a small amount of exchangeable hydroxyl groups capable of ligand exchange with fluoride in oxisol. The research results indicate that among the factors inducing the changes in some properties of oxisols after adsorption of fluoride, the role became less important in the sequence of the release of OH-> the increase of negative charge > the decrease of positive charge.展开更多
文摘In the present work, the adsorption of sulfate and fluoride by two oxisols was studied, and during the adsorption OH- released from soils were measured and the change in surface charge carried by one of the soils after the adsorption of fluoride was examined. The results show that the adsorption of sulfate by oxisols and the release of OH- from oxisols both increased with the increase of sulfate added at a constant pH, but decreased when pH became higher gradually. The adsorption and release both decreased markedly after removal of iron oxide. The ratio of OH- to SO42- for Fe-removed soils decreased to 15-34% of the original soils. These results suggest that iron oxide was the chief carrier of hydroxyl groups capable of ligand exchange with sulfate in oxisols.Compared with sulfate, however, the amount of fluoride adsorbed, OH- released during the adsorption of fluoride and the ratio of OH- to F- were much larger. The effect of iron oxide on the adsorption of fluoride by oxisols was smaller than that on the adsorption of sulfate. The ratios of OH- to F- for an oxisol from Brazil were 0.62 and 0.48 respectively before and after removal of free iron oxides. This implied that iron oxide only provided a small amount of exchangeable hydroxyl groups capable of ligand exchange with fluoride in oxisol. The research results indicate that among the factors inducing the changes in some properties of oxisols after adsorption of fluoride, the role became less important in the sequence of the release of OH-> the increase of negative charge > the decrease of positive charge.