A field experiment was conducted to investigate the effect of supplementary irrigation on watermelon (Citullus lanatus) yield, water-use efficiency (WUE) and root distribution in gravel-mulched field in northwest Lo...A field experiment was conducted to investigate the effect of supplementary irrigation on watermelon (Citullus lanatus) yield, water-use efficiency (WUE) and root distribution in gravel-mulched field in northwest Loess Plateau, China, during 2001 and 2002 growing seasons. The results showed that gravel mulch significantly improved seedling emergence, increased yield and WUE, and alleviated the influence of drought on plant growth. Regardless of gravel mulch application, supplementary irrigation increased watermelon yields, average fruit weight and number of fruit, especially yield increased as the amount of irrigation increased (P<0.05). Generally, WUE of irrigated treatments were higher than that of non-irrigation treatment in gravel-mulched field. The effect of water supply on root distribution was different in two years. In 2001, average root length density (RLD) and root weight density (RWD) whole the soil profile increased. In 2002, however, RLD and RWD decreased as water supply increased. The average RLD and RWD in 2001 were significantly higher than those in 2002. Maybe we can interpret the phenomenon with the theory that there is a need to optimize root distribution (in terms of water relations) and aboveground biomass for a given water supply.The yield may not depend as much on root growth as on the amount of water required at critical stages. A significant effect of soil depth on RLD and RWD were observed in both years, but did not rapidly decrease with depth.展开更多
基金The study wa supported by the National Natural Science Foundation of China(NNSFC)(90202015,40301008).
文摘A field experiment was conducted to investigate the effect of supplementary irrigation on watermelon (Citullus lanatus) yield, water-use efficiency (WUE) and root distribution in gravel-mulched field in northwest Loess Plateau, China, during 2001 and 2002 growing seasons. The results showed that gravel mulch significantly improved seedling emergence, increased yield and WUE, and alleviated the influence of drought on plant growth. Regardless of gravel mulch application, supplementary irrigation increased watermelon yields, average fruit weight and number of fruit, especially yield increased as the amount of irrigation increased (P<0.05). Generally, WUE of irrigated treatments were higher than that of non-irrigation treatment in gravel-mulched field. The effect of water supply on root distribution was different in two years. In 2001, average root length density (RLD) and root weight density (RWD) whole the soil profile increased. In 2002, however, RLD and RWD decreased as water supply increased. The average RLD and RWD in 2001 were significantly higher than those in 2002. Maybe we can interpret the phenomenon with the theory that there is a need to optimize root distribution (in terms of water relations) and aboveground biomass for a given water supply.The yield may not depend as much on root growth as on the amount of water required at critical stages. A significant effect of soil depth on RLD and RWD were observed in both years, but did not rapidly decrease with depth.