Dianchi Lake is one of the lakes with the richest phosphorus source in the world, in which the P2O5 content in the bottom sediments reaches averagely 0.51 wt % and maximally 1.92%. Studies indicate that this: extremel...Dianchi Lake is one of the lakes with the richest phosphorus source in the world, in which the P2O5 content in the bottom sediments reaches averagely 0.51 wt % and maximally 1.92%. Studies indicate that this: extremely P-rich state is attributed mainly to the large volume (as high as hundred thousands of tons) of phosphatic matter coming into the lake as many rivers feeding the lake pass through a vast area of phosphate-mining districts, which then undergo weathering and particularly some human activities, including waste water discharge. When phosphatic matter enters the lake, its grained parts are firstly decomposed by phosphorus-decomposing bacteria, and finally accumulated in some geographically special parts of the lake, such as a bay area where water flow is much more slower than elsewhere in the lake. With the involvement of phosphorus-concentrating bacteria, the accumulated phosphates in the bottom sludge ultimately form phosphate minerals through deep-burial diagenesis.展开更多
基金The present study is part of the results of a project(No.4987204)granted by the National Natural Science Foundation of China.
文摘Dianchi Lake is one of the lakes with the richest phosphorus source in the world, in which the P2O5 content in the bottom sediments reaches averagely 0.51 wt % and maximally 1.92%. Studies indicate that this: extremely P-rich state is attributed mainly to the large volume (as high as hundred thousands of tons) of phosphatic matter coming into the lake as many rivers feeding the lake pass through a vast area of phosphate-mining districts, which then undergo weathering and particularly some human activities, including waste water discharge. When phosphatic matter enters the lake, its grained parts are firstly decomposed by phosphorus-decomposing bacteria, and finally accumulated in some geographically special parts of the lake, such as a bay area where water flow is much more slower than elsewhere in the lake. With the involvement of phosphorus-concentrating bacteria, the accumulated phosphates in the bottom sludge ultimately form phosphate minerals through deep-burial diagenesis.