Oral infectious diseases caused by a variety of pathogenic bacteria seriously affect the quality of life.However,these diseases remain a clinical challenge because of the lack of simple,safe,and universal prophylactic...Oral infectious diseases caused by a variety of pathogenic bacteria seriously affect the quality of life.However,these diseases remain a clinical challenge because of the lack of simple,safe,and universal prophylactics.To address these limitations,we synthesize CuO_(x)nanodots(CuO_(x)NDs)with excellent Fenton-like reaction activity and utilize them in the treatment of oral bacterial infections.Different from other complicated approaches,CuO_(x)NDs are rationally prepared using a facile one-pot aqueous synthesis.In the presence of H_(2)O_(2),these well-developed CuO_(x)NDs can efficiently catalyze the generation of hydroxyl radicals(·OH)around oral pathogens,leading to the death of various bacteria.Meanwhile,results of biosafety indicate the high biocompatibility and extremely low toxicity of these CuO_(x)NDs.After understanding the admirable in vitro antibacterial effect of CuO_(x)NDs in the presence of H_(2)O_(2),we further explore their in vivo antibacterial performance on several classical animal models including oral mucosal wound model,intragingival bacteria-infected model,and the periodontal infection model.As expected,these CuO_(x)NDs with wide-spectrum antibacterial activity can serve as high-performance antibacterial reagents for the treatment of various oral bacterial infections with the help of H_(2)O_(2).In brief,current nanoplatform can act as efficient antibiotics against oral pathogens with broadening the biomedical applications of copper-based nanomaterials.展开更多
Spatially twisted light with femtosecond temporal structure is of particular interest in strong-field physics and light–matter interactions.However,present femtosecond vortex sources exhibit limited power handling ca...Spatially twisted light with femtosecond temporal structure is of particular interest in strong-field physics and light–matter interactions.However,present femtosecond vortex sources exhibit limited power handling capabilities,and their amplification remains an ongoing challenge particularly for high-order orbital angular momentum(OAM)states due to several inherent technical difficulties.Here,we exploit a straightforward approach to directly amplify a femtosecond optical vortex(FOV,OAM=-8?)by using a two-stage single-crystal fiber(SCF)amplifier system without pulse stretching and compression in the time domain,delivering 23-W,163-fs pulses at a repetition rate of1 MHz.The spatial and temporal features are well-conserved during the amplification,as well as the high modal purity(>96%).The results indicate that the multi-stage SCF amplifier system is particularly suited for direct amplification of high-order FOVs.The generated high-power femtosecond OAM laser beams are expected to help reveal complex physical phenomena in light–matter interactions and pave the way for practical applications in attoscience,laser plasma acceleration,and high-dimension micromachining.展开更多
In this paper,we report on a wide wavelength tuning optical vortex carrying orbital angular momentum(OAM)of±?,from a thulium-doped yttrium aluminum perovskite(YAP)laser employing a birefringent filter.The OAM is ...In this paper,we report on a wide wavelength tuning optical vortex carrying orbital angular momentum(OAM)of±?,from a thulium-doped yttrium aluminum perovskite(YAP)laser employing a birefringent filter.The OAM is experimentally found to be well maintained during the whole wavelength tuning process.The Laguerre-Gaussian(LG_(0,+1))mode with a tuning range of 58 nm from 1934.8 to 1993.0 nm and LG0,-1mode with a range of 76 nm from 1920.4 to 1996.6 nm,are,respectively,obtained.This is,to the best of our knowledge,the first experimental implementation of wavelength tuning for a scalar vortex laser in the 2μm spectral range,as well as the broadest tuning range ever reported from the vortex laser cavity.Such a vortex laser with robust structure and straightforward wavelength tuning capability will be an ideal light source for potential applications in the field of optical communication with one additional degree of freedom.展开更多
基金funded by the National Natural Science Foundation of China(grant Nos.82170994 and 22178140)the Jilin Province Department of Finance(grant Nos.JCSZ2020304-11,JCSZ2023481-4,and JCSZ2023481-6).All schemes were prepared by authors with BioRender.com。
文摘Oral infectious diseases caused by a variety of pathogenic bacteria seriously affect the quality of life.However,these diseases remain a clinical challenge because of the lack of simple,safe,and universal prophylactics.To address these limitations,we synthesize CuO_(x)nanodots(CuO_(x)NDs)with excellent Fenton-like reaction activity and utilize them in the treatment of oral bacterial infections.Different from other complicated approaches,CuO_(x)NDs are rationally prepared using a facile one-pot aqueous synthesis.In the presence of H_(2)O_(2),these well-developed CuO_(x)NDs can efficiently catalyze the generation of hydroxyl radicals(·OH)around oral pathogens,leading to the death of various bacteria.Meanwhile,results of biosafety indicate the high biocompatibility and extremely low toxicity of these CuO_(x)NDs.After understanding the admirable in vitro antibacterial effect of CuO_(x)NDs in the presence of H_(2)O_(2),we further explore their in vivo antibacterial performance on several classical animal models including oral mucosal wound model,intragingival bacteria-infected model,and the periodontal infection model.As expected,these CuO_(x)NDs with wide-spectrum antibacterial activity can serve as high-performance antibacterial reagents for the treatment of various oral bacterial infections with the help of H_(2)O_(2).In brief,current nanoplatform can act as efficient antibiotics against oral pathogens with broadening the biomedical applications of copper-based nanomaterials.
基金National Natural Science Foundation of China(52032009,62075090)。
文摘Spatially twisted light with femtosecond temporal structure is of particular interest in strong-field physics and light–matter interactions.However,present femtosecond vortex sources exhibit limited power handling capabilities,and their amplification remains an ongoing challenge particularly for high-order orbital angular momentum(OAM)states due to several inherent technical difficulties.Here,we exploit a straightforward approach to directly amplify a femtosecond optical vortex(FOV,OAM=-8?)by using a two-stage single-crystal fiber(SCF)amplifier system without pulse stretching and compression in the time domain,delivering 23-W,163-fs pulses at a repetition rate of1 MHz.The spatial and temporal features are well-conserved during the amplification,as well as the high modal purity(>96%).The results indicate that the multi-stage SCF amplifier system is particularly suited for direct amplification of high-order FOVs.The generated high-power femtosecond OAM laser beams are expected to help reveal complex physical phenomena in light–matter interactions and pave the way for practical applications in attoscience,laser plasma acceleration,and high-dimension micromachining.
基金financially supported by the National Natural Science Foundation of China(Nos.52032009 and 62075090)Natural Science Foundation of Jiangsu Province(Nos.SBK2019030177 and SBX2021020083)Postgraduates Innovation Program of Jiangsu Province(No.KYCX21_2619)。
文摘In this paper,we report on a wide wavelength tuning optical vortex carrying orbital angular momentum(OAM)of±?,from a thulium-doped yttrium aluminum perovskite(YAP)laser employing a birefringent filter.The OAM is experimentally found to be well maintained during the whole wavelength tuning process.The Laguerre-Gaussian(LG_(0,+1))mode with a tuning range of 58 nm from 1934.8 to 1993.0 nm and LG0,-1mode with a range of 76 nm from 1920.4 to 1996.6 nm,are,respectively,obtained.This is,to the best of our knowledge,the first experimental implementation of wavelength tuning for a scalar vortex laser in the 2μm spectral range,as well as the broadest tuning range ever reported from the vortex laser cavity.Such a vortex laser with robust structure and straightforward wavelength tuning capability will be an ideal light source for potential applications in the field of optical communication with one additional degree of freedom.
基金supported by the National Key R&D Program of China(2021YFA1200201)Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018)+1 种基金the National Natural Science Foundation of China(12174014,12372106)the Fundamental Research Funds for the Central Universities(YMF-22-L-808)。