In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The res...In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The results showed that the chromosome arm 1RS of Neuzucht was transmitted to 5 of the 7 types of Aimengniu, i.e., Aimengniu Ⅱ and Aimengniu Ⅳ-Aimengniu VII, no segment of t RS was identified in Aimengniu Ⅰ or Aimengniu Ⅲ. As for the 17 derivatives, the 1RS chromosome arm of Aimengniu was transmitted to 11 derivatives, part segments of 1RS were found in 1 derivative, while no segment was found in the remaining 5 ones. The results provided the evidence that molecular-marker technology was an efficient approach and suitable for analysis of the transmission of chromosome 1R.展开更多
qSsnps-5D为一个控制不育小穗数的主效稳定QTL,其优异等位基因来自小麦骨干亲本京411。本研究利用科农9204×京411衍生的包含187个家系的重组自交系群体(KJ-RIL,recombinant inbred lines derived from the cross of Kenong 9204 an...qSsnps-5D为一个控制不育小穗数的主效稳定QTL,其优异等位基因来自小麦骨干亲本京411。本研究利用科农9204×京411衍生的包含187个家系的重组自交系群体(KJ-RIL,recombinant inbred lines derived from the cross of Kenong 9204 and Jing 411)及314份育成品种(系)组成的自然群体对其进行遗传及育种选择效应解析,明确其对产量性状的遗传效应,分析其在育种过程中的选择应用情况,评价其未来育种应用潜力。试验结果表明,qSsnps-5D在8套数据集中被定位于5D染色体上0.72~4.13 Mb之间,跨度约3.41 Mb。基于KJ-RIL群体及自然群体分析结果均表明,来自京411的优异等位基因可增加单株穗数,但对千粒重表现为极显著负向效应;其对穗粒数、单株产量的影响在两套群体的分析结果不一致。在qSsnps-5D靶区间内选择2个紧密连锁的SNP标记AX-110565536和AX-86170796对314份自然群体进行目标QTL单倍型分析;结果显示,国外品种对qSsnps-5D优异单倍型(Hap-GG-CC)的选择利用率最高;中国品种中青海省、四川省和河南省3个省份优异单倍型品种占比较高,而山东、北京、陕西和河北4地对qSsnps-5D优异单倍型选择利用率较低。时间跨度显示,qSsnps-5D优异单倍型Hap-GG-CC选择利用效率随时间推移在我国呈下降趋势。为便于qSsnps-5D后期分子育种应用,本研究开发了一个基于PCR检测技术的InDel分子标记,命名为5D-1620921,其带型扩增清晰,可重复性好,为qSsnps-5D分子育种应用提供理论支撑。展开更多
The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents...The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.‘Kenong 9204’(KN9204)is a candidate foundation parent characterized by ideotype,high yield potential,and particularly high nitrogen fertilizer utilization.To better understand the genetic basis of its high yield potential,high throughput whole-genome re-sequencing(10×)was performed on KN9204,its parental lines and its derivatives.A high-resolution genetic composition map of KN9204 was constructed,which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci(QTL)from a bi-parental mapping population.Xiaoyan 693(XY693),a wheat–Thinopyrum ponticum partial amphidiploid,contributed a great deal to the high yield potential of KN9204,and three major stable QTLs from XY693 were fine mapped.The transmissibility of key genomic segments from KN9204 to its derivatives were delineated,indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.Evidence for selection sweeps in the breeding programs was identified.This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.展开更多
To transfer a photon with a 1.55μm wavelength into an electron in an integrated optoelectronic silicon waveguide detector,selenium-doped silicon with deep energy levels is used.The deep levels in the silicon with imp...To transfer a photon with a 1.55μm wavelength into an electron in an integrated optoelectronic silicon waveguide detector,selenium-doped silicon with deep energy levels is used.The deep levels in the silicon with implanted selenium are studied.Three levels are observed and their captured cross sections,concentrations and in-depth profiles are measured.展开更多
基金supported by the National Basic Research Program of China (973 Program,2006CB101700)
文摘In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The results showed that the chromosome arm 1RS of Neuzucht was transmitted to 5 of the 7 types of Aimengniu, i.e., Aimengniu Ⅱ and Aimengniu Ⅳ-Aimengniu VII, no segment of t RS was identified in Aimengniu Ⅰ or Aimengniu Ⅲ. As for the 17 derivatives, the 1RS chromosome arm of Aimengniu was transmitted to 11 derivatives, part segments of 1RS were found in 1 derivative, while no segment was found in the remaining 5 ones. The results provided the evidence that molecular-marker technology was an efficient approach and suitable for analysis of the transmission of chromosome 1R.
文摘qSsnps-5D为一个控制不育小穗数的主效稳定QTL,其优异等位基因来自小麦骨干亲本京411。本研究利用科农9204×京411衍生的包含187个家系的重组自交系群体(KJ-RIL,recombinant inbred lines derived from the cross of Kenong 9204 and Jing 411)及314份育成品种(系)组成的自然群体对其进行遗传及育种选择效应解析,明确其对产量性状的遗传效应,分析其在育种过程中的选择应用情况,评价其未来育种应用潜力。试验结果表明,qSsnps-5D在8套数据集中被定位于5D染色体上0.72~4.13 Mb之间,跨度约3.41 Mb。基于KJ-RIL群体及自然群体分析结果均表明,来自京411的优异等位基因可增加单株穗数,但对千粒重表现为极显著负向效应;其对穗粒数、单株产量的影响在两套群体的分析结果不一致。在qSsnps-5D靶区间内选择2个紧密连锁的SNP标记AX-110565536和AX-86170796对314份自然群体进行目标QTL单倍型分析;结果显示,国外品种对qSsnps-5D优异单倍型(Hap-GG-CC)的选择利用率最高;中国品种中青海省、四川省和河南省3个省份优异单倍型品种占比较高,而山东、北京、陕西和河北4地对qSsnps-5D优异单倍型选择利用率较低。时间跨度显示,qSsnps-5D优异单倍型Hap-GG-CC选择利用效率随时间推移在我国呈下降趋势。为便于qSsnps-5D后期分子育种应用,本研究开发了一个基于PCR检测技术的InDel分子标记,命名为5D-1620921,其带型扩增清晰,可重复性好,为qSsnps-5D分子育种应用提供理论支撑。
基金supported by the grants from the Shandong Major Basic Research Project of Natural Science Foundation,China(ZR2019ZD16)the Shandong Provincial Key Research and Development Program,China(2019GNC106126 and 2021LZGC009)+3 种基金the Natural Science Foundation of Hebei Province,China(C2021205013)the Hebei Scientific and Technological Innovation Team of Modern Wheat Seed Industry,China(21326318D)the National Natural Science Foundation of China(31871612,31901535,and 32101726)the China Agriculture Research System of MOF and MARA(CARS-03).
文摘The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.‘Kenong 9204’(KN9204)is a candidate foundation parent characterized by ideotype,high yield potential,and particularly high nitrogen fertilizer utilization.To better understand the genetic basis of its high yield potential,high throughput whole-genome re-sequencing(10×)was performed on KN9204,its parental lines and its derivatives.A high-resolution genetic composition map of KN9204 was constructed,which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci(QTL)from a bi-parental mapping population.Xiaoyan 693(XY693),a wheat–Thinopyrum ponticum partial amphidiploid,contributed a great deal to the high yield potential of KN9204,and three major stable QTLs from XY693 were fine mapped.The transmissibility of key genomic segments from KN9204 to its derivatives were delineated,indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.Evidence for selection sweeps in the breeding programs was identified.This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60776046,60976046,60837001 and 61021003the National Basic Research Program of China under Grant Nos 2006CB302802 and 2010CB933800。
文摘To transfer a photon with a 1.55μm wavelength into an electron in an integrated optoelectronic silicon waveguide detector,selenium-doped silicon with deep energy levels is used.The deep levels in the silicon with implanted selenium are studied.Three levels are observed and their captured cross sections,concentrations and in-depth profiles are measured.