Mountain block recharge(MBR),an important water resource,is a widespread process that recharges lowland aquifers.However,little is known about MBR due to the limited climatic and geologic data in mountainous regions s...Mountain block recharge(MBR),an important water resource,is a widespread process that recharges lowland aquifers.However,little is known about MBR due to the limited climatic and geologic data in mountainous regions such as the northern central foothills of Tianshan.Here,we present an approach to quantify MBR through the combination of water balance calculations and numerical modeling.MBR calculated from the water balance in the data-limited Tianshan Mountains is employed as a fluid-flux boundary condition in the numerical model of the plain.To verify the performance of the model,mean absolute error and root mean square error were used.Results show that the volume of water that is recharging the aquifer via MBR is 107.29 million m^(3)/yr,accounting for 2.2% of the total precipitation that falls in the mountains.Additionally,53.3% of that precipitation enters the plain aquifer via runoff,totaling 2,652.68 million m^(3)/yr.The lower volume of MBR is attributed to a major range-bounding anticline with apparent low permeability in the Tianshan Mountains.Through numerical modeling of groundwater,MBR coming from bedrock was found to be significant,accounting for 14% of total aquifer recharge in the plain,only after the portion of runoff seepage.This research contributes to a deeper understanding of MBR,and may provide instructions for estimating groundwater recharge in arid and semi-arid areas.展开更多
基金funded by the National Natural Science Foundation of China-Henan Talent Training Joint Foundation (Grant No.U1504404)the National Natural Science Foundation of China: Dynamic mechanism and ecological effect of watershed transformation of surface water and groundwater and groundwater in some typical areas in Junggar basin (Grant No.U1603243)。
文摘Mountain block recharge(MBR),an important water resource,is a widespread process that recharges lowland aquifers.However,little is known about MBR due to the limited climatic and geologic data in mountainous regions such as the northern central foothills of Tianshan.Here,we present an approach to quantify MBR through the combination of water balance calculations and numerical modeling.MBR calculated from the water balance in the data-limited Tianshan Mountains is employed as a fluid-flux boundary condition in the numerical model of the plain.To verify the performance of the model,mean absolute error and root mean square error were used.Results show that the volume of water that is recharging the aquifer via MBR is 107.29 million m^(3)/yr,accounting for 2.2% of the total precipitation that falls in the mountains.Additionally,53.3% of that precipitation enters the plain aquifer via runoff,totaling 2,652.68 million m^(3)/yr.The lower volume of MBR is attributed to a major range-bounding anticline with apparent low permeability in the Tianshan Mountains.Through numerical modeling of groundwater,MBR coming from bedrock was found to be significant,accounting for 14% of total aquifer recharge in the plain,only after the portion of runoff seepage.This research contributes to a deeper understanding of MBR,and may provide instructions for estimating groundwater recharge in arid and semi-arid areas.