To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),e...To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively.展开更多
基金Funded by National Natural Science Foundation of China(Nos.U21A20149 and 51878003)。
文摘To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively.