With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d...With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes.展开更多
Glaucoma as an irreversible blinding opioid neuropathy disease, its blindness rate is the second only after cataract in the world. The optic cup-to-disc ratio(CDR) is generally considered to be an important clinical i...Glaucoma as an irreversible blinding opioid neuropathy disease, its blindness rate is the second only after cataract in the world. The optic cup-to-disc ratio(CDR) is generally considered to be an important clinical indicator for judging the severity of glaucoma by ophthalmologists from retinal fundus image. In this letter, we propose an automatic CDR measurement method that consists of a novel optic disc localization method and a simultaneous optic disc and cup segmentation network based on the improved U shape deep convolutional neural network. Experimental results demonstrate that the proposed method can achieve superior performance when compared with other existing methods. Thus, our method can be used as a powerful tool for glaucoma-assisted diagnosis.展开更多
基金Projects(61573380,61303185)supported by the National Natural Science Foundation of ChinaProject(13BTQ052)supported by the National Social Science Foundation of China+1 种基金Project(2016M592450)supported by the China Postdoctoral Science FoundationProject(2016JJ4119)supported by the Hunan Provincial Natural Science Foundation of China
文摘With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes.
基金supported by the National Natural Science Foundation of China(Nos.61502537 and 61573380)the Hunan Provincial Natural Science Foundation of China(Nos.2018JJ3681 and 2016JJ2150)+3 种基金the Open Project Fund of Key Lab of Digital Signal and Image Processing of Guangdong Province(No.2018GDDSIPL-01)the Mutual Creation Project for Teachers and Students(No.2018gczd022)the 111 Project(No.B18059)the Fundamental Research Funds for the Central Universities of Central South University(No.2018zzts576)
文摘Glaucoma as an irreversible blinding opioid neuropathy disease, its blindness rate is the second only after cataract in the world. The optic cup-to-disc ratio(CDR) is generally considered to be an important clinical indicator for judging the severity of glaucoma by ophthalmologists from retinal fundus image. In this letter, we propose an automatic CDR measurement method that consists of a novel optic disc localization method and a simultaneous optic disc and cup segmentation network based on the improved U shape deep convolutional neural network. Experimental results demonstrate that the proposed method can achieve superior performance when compared with other existing methods. Thus, our method can be used as a powerful tool for glaucoma-assisted diagnosis.