期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
1
作者 LI Fang-fang WANG Huan-ting +3 位作者 zhao rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog SHORT TEXT HYBRID LEARNING SENTIMENT classification
下载PDF
利用糖酵解相关LncRNA构建肺腺癌患者的预后模型
2
作者 丁丹 赵荣昌 +2 位作者 丁燕 张丹丹 蔡建 《医学信息》 2024年第5期1-11,19,共12页
目的利用糖酵解相关LncRNA构建肺腺癌患者的预后模型,帮助临床预测个体化药物疗效和疾病复发情况。方法综合TCGA和GSEA数据库,筛选与肺腺癌中糖酵解相关lncRNA表达数据,利用LASSO和Cox回归分析构建预后模型,绘制受试者工作特征曲线(ROC... 目的利用糖酵解相关LncRNA构建肺腺癌患者的预后模型,帮助临床预测个体化药物疗效和疾病复发情况。方法综合TCGA和GSEA数据库,筛选与肺腺癌中糖酵解相关lncRNA表达数据,利用LASSO和Cox回归分析构建预后模型,绘制受试者工作特征曲线(ROC)并加以校准,将临床病理特征和风险评分进行整合构建列线图,分析免疫细胞分布、免疫相关分子和药物敏感性的差异与风险评分的关系。结果在GSEA数据库中共选取出4个有效糖酵解基因集(BioCarta、Hallmark、KEGG、REACTOME和WP),与TCGA数据中的lncRNA表达数据结合获得1025个与糖酵解相关的lncRNA。差异分析获得186个在肿瘤组织和正常组织间差异表达的糖酵解相关lncRNA;单因素Cox、LASSO回归分析获得19个与预后相关的lncRNA。多因素Cox比例风险回归分析获得了由12个lncRNA组成的预测模型。模型ACU提示预测性能较好,1、3、5年生存时间的AUC分别为0.711、0.713和0.699,并且可将肺腺癌区分为高、低风险组,高、低风险组的总生存期(OS)比较,差异有统计学意义(P<0.05)。单因素和多因素Cox分析显示,风险评分可作为预测肺腺癌生存状态的独立预后指标,并且风险评分的预测性能优于其它临床病理特征。此外,不同的性别、T、N、M和Stage分期的风险评分比较,差异有统计学意义(P<0.05)。风险评分与临床病理特征构建的列线图对1、3、5年预后的预测能力均有提升(1、3、5年生存时间的AUC分别为0.741、0.750和0.715)。高、低风险组间免疫微环境比较,差异有统计学意义(P<0.05),表现为多数免疫细胞与低风险评分呈正相关。药物敏感性分析提示丝裂霉素C、紫杉醇、雷帕霉素、多西他赛和厄洛替尼的药物敏感性在高、低风险组间也存在区别。结论糖酵解相关lncRNA构建的肺腺癌预后模型可以高效准确的预测肺腺癌患者的预后,具有一定的临床意义。 展开更多
关键词 肺腺癌 糖酵解 lncRNA 预后 列线图 药物敏感性
下载PDF
GIS支持下的西北干旱区地下侧向径流量的计算研究——以新疆淖毛湖盆地为例 被引量:1
3
作者 赵荣昌 王春磊 《甘肃地质》 2019年第1期85-90,共6页
在总结研究区各断面地下水侧向径流量常规算法的基础上,通过分析已有钻孔、物探成果,结合研究区水文地质条件确定达西公式各计算参数沿断面的空间分布特征,生成计算断面参数栅格,并基于GIS采用栅格空间叠加分析计算各计算断面上的地下... 在总结研究区各断面地下水侧向径流量常规算法的基础上,通过分析已有钻孔、物探成果,结合研究区水文地质条件确定达西公式各计算参数沿断面的空间分布特征,生成计算断面参数栅格,并基于GIS采用栅格空间叠加分析计算各计算断面上的地下水侧向径流量,结果表明前人计算结果与栅格叠加分析法计算结果大体上一致,但也存在一定差异。常规的分段计算方法,常用一个参数来表征较大尺度断面,人为因素对计算结果影响较大,基于GIS的栅格叠加分析法充分考虑了各计算参数在二维空间上的各向异性,参数选取更符合实际,结果也更为可靠,计算值可直接耦合为地下水数值模型中的二类边界(定流量边界),避免流量边界上的人为分配情况,提高模型计算精度。 展开更多
关键词 GIS 地下水侧向径流量 常规计算方法 栅格叠加分析 西北干旱区
原文传递
Automatic segmentation of optic disc and cup for CDR calculation
4
作者 zhao Xin GUO Fan +1 位作者 ZOU Bei-ji zhao rong-chang 《Optoelectronics Letters》 EI 2019年第5期381-385,共5页
Glaucoma as an irreversible blinding opioid neuropathy disease, its blindness rate is the second only after cataract in the world. The optic cup-to-disc ratio(CDR) is generally considered to be an important clinical i... Glaucoma as an irreversible blinding opioid neuropathy disease, its blindness rate is the second only after cataract in the world. The optic cup-to-disc ratio(CDR) is generally considered to be an important clinical indicator for judging the severity of glaucoma by ophthalmologists from retinal fundus image. In this letter, we propose an automatic CDR measurement method that consists of a novel optic disc localization method and a simultaneous optic disc and cup segmentation network based on the improved U shape deep convolutional neural network. Experimental results demonstrate that the proposed method can achieve superior performance when compared with other existing methods. Thus, our method can be used as a powerful tool for glaucoma-assisted diagnosis. 展开更多
关键词 cup-to-disc ratio(CDR) AUTOMATIC segmentation OPTIC DISC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部