期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Action Recognition in Surveillance Videos with Combined Deep Network Models
1
作者 ZHANG Diankai zhao rui-wei +3 位作者 SHEN Lin CHEN Shaoxiang SUN Zhenfeng JIANG Yu-Gang 《ZTE Communications》 2016年第B12期54-60,共7页
Action recognition is an important topic in computer vision. Recently, deep learning technologies have been successfully used in lots of applications including video data for sloving recognition problems. However, mos... Action recognition is an important topic in computer vision. Recently, deep learning technologies have been successfully used in lots of applications including video data for sloving recognition problems. However, most existing deep learning based recognition frameworks are not optimized for action in the surveillance videos. In this paper, we propose a novel method to deal with the recognition of different types of actions in outdoor surveillance videos. The proposed method first introduces motion compensation to improve the detection of human target. Then, it uses three different types of deep models with single and sequenced images as inputs for the recognition of different types of actions. Finally, predictions from different models are fused with a linear model. Experimental results show that the proposed method works well on the real surveillance videos. 展开更多
关键词 action recognition deep network models model fusion surveillance video
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部