As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately...As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.展开更多
The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to...The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to remote uniform shearing stress. Both the elastic inclusion and matrix are considered isotropic with a separate elastic modulus. Based on Lur’e’s approach to solving ellipsoidal cavity problems through Lamé functions, several harmonic functions are introduced for Papkovich-Neuber displacement potentials. The displacement fields inside and outside the ellipsoidal inclusion are obtained explicitly, and the stress field in the whole domain is consequently determined.展开更多
基金supported by State Key Laboratory of Robotics and System of China (Grant No. SKLR-2010 -MS - 14)State Key Lab of Embedded System and Service Computing of China(Grant No. 2010-11)
文摘As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.
基金supported by the National Natural Science Foundation of China(Grant No.11102022)
文摘The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to remote uniform shearing stress. Both the elastic inclusion and matrix are considered isotropic with a separate elastic modulus. Based on Lur’e’s approach to solving ellipsoidal cavity problems through Lamé functions, several harmonic functions are introduced for Papkovich-Neuber displacement potentials. The displacement fields inside and outside the ellipsoidal inclusion are obtained explicitly, and the stress field in the whole domain is consequently determined.