期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters 被引量:5
1
作者 zhaoxin lao Rui Sun +6 位作者 Dongdong Jin Zhongguo Ren Chen Xin Yachao Zhang Shaojun Jiang Yiyuan Zhang Li Zhang 《International Journal of Extreme Manufacturing》 EI 2021年第2期89-97,共9页
Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus str... Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus structure is a promising approach to achieve shape transformation based on its heterogeneous chemical or physical properties on opposite sides.However, the heterogeneity is generally realized by multi-step processing, different materials,and/or different processing parameters. Here, we present a simple and flexible method of producing p H-sensitive Janus microactuators from a single material, using the same laser printing parameters. These microactuators exhibit reversible structural deformations with large bending angles of ~31°and fast response(~0.2 s) by changing the p H value of the aqueous environment. Benefited from the high flexibility of the laser printing technique and the spatial arrangements, pillar heights, and bending directions of microactuators are readily controlled,enabling a variety of switchable ordered patterns and complex petal-like structures on flat surfaces and inside microchannels. Finally, we explore the potential applications of this method in information encryption/decryption and microtarget capturing. 展开更多
关键词 micro actuator smart material pH hydrogel Janus structure laser printing
下载PDF
Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material 被引量:38
2
作者 Jincheng Ni Chaowei Wang +7 位作者 Chenchu Zhang Yanlei Hu Liang Yang zhaoxin lao Bing Xu Jiawen Li Dong Wu Jiaru Chu 《Light(Science & Applications)》 SCIE EI CAS CSCD 2017年第1期713-720,共8页
Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polari... Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polarization-dependent azobenzene polymers.However,in isotropic polymers,the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to the two-dimensional‘doughnut’-shaped intensity profile of the optical vortices.Here we develop a powerful strategy to realize chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave,which produces threedimensional(3D)spiral optical fields.These coaxial interference beams are generated by designing contrivable holograms consisting of an azimuthal phase and an equiphase loaded on a liquid-crystal spatial light modulator.In isotropic polymers,3D chiral microstructures are achieved under illumination using coaxial interference femtosecond laser beams with their chirality controlled by the topological charge.Our further investigation reveals that the spiral lobes and chirality are caused by interfering patterns and helical phase wavefronts,respectively.This technique is simple,stable and easy to perform,and it offers broad applications in optical tweezers,optical communications and fast metamaterial fabrication. 展开更多
关键词 chiral microstructure coaxial interference optical vortex two-photon fabrication
原文传递
Dynamic Airy imaging through high_efficiency broadband phase microelements by femtosecond laser direct writing 被引量:4
3
作者 ZE CAI XINBO QI +8 位作者 DENG PAN SHENGYUN JI JINCHENG NI zhaoxin lao CHEN XIN JIAWEN LI YANLEI HU DONG Wu JIARU CHI 《Photonics Research》 SCIE EI CSCD 2020年第6期875-883,共9页
Manipulating Airy beams to symmetric Airy beams(SABs)with abruptly autofocusing and self accelerating properties has attracted much attention.With such a particular propagation dynamic,SABs may provide great potential... Manipulating Airy beams to symmetric Airy beams(SABs)with abruptly autofocusing and self accelerating properties has attracted much attention.With such a particular propagation dynamic,SABs may provide great potential in dynamic signal imaging.On the other hand,the generation of SABs by spatial light modulators suffers from the limitations of phase gradient accuracy,low optical efficiency(<40%),and a bulky footprint.Therefore,exploring imaging applications and optimal generation methods of these Airy-type beams deserves further research.Here,based on the coordinate transformation of SAB,an asymmetric Airy beam(AAB)is realized.Symmetric/asymmetric cubic phase microplates(SCPPs/ACPPs)are designed and fabricated for generating SAB/AAB.The SCPP/ACPP demonstrates superior performance:compact construction(60μm × 60μm × 1.1μm),continuous variation of phase,high efficiency(~81%at 532 nm),and broadband operation from 405 to 780 nm.Dynamic imaging under monochromatic and polychromatic lights is realized by the SAB/AAB,indicating various results at different propagation distances with a certain initial signal.Further investigation reveals that the SCPP on a soft substrate maintains its physical dimensions and optical properties unchanged during stretching.Our work enables wide potential applications in integrated optics,beam manipulation,and imaging. 展开更多
关键词 PHASE unchanged STRETCHING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部