This paper is concerned with the existence of traveling wave solutions in a reaction- diffusion predator-prey system with nonlocal delays. By introducing a partially expo- nential quasi-monotonicity condition and a ne...This paper is concerned with the existence of traveling wave solutions in a reaction- diffusion predator-prey system with nonlocal delays. By introducing a partially expo- nential quasi-monotonicity condition and a new cross iteration scheme, we reduce the existence of traveling wave solutions to the existence of a pair of upper-lower solutions. By constructing a desirable pair of upper-lower solutions, we establish the existence of traveling wave solutions. Finally, some numerical examples are carried out to illustrate the theoretical results.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 11071254).
文摘This paper is concerned with the existence of traveling wave solutions in a reaction- diffusion predator-prey system with nonlocal delays. By introducing a partially expo- nential quasi-monotonicity condition and a new cross iteration scheme, we reduce the existence of traveling wave solutions to the existence of a pair of upper-lower solutions. By constructing a desirable pair of upper-lower solutions, we establish the existence of traveling wave solutions. Finally, some numerical examples are carried out to illustrate the theoretical results.