A novel crystal nucleus-based cement-hardening accelerator was evaluated using various mortar and segment concrete experiments.The mechanism of hardening acceleration was investigated via hydration temperature variati...A novel crystal nucleus-based cement-hardening accelerator was evaluated using various mortar and segment concrete experiments.The mechanism of hardening acceleration was investigated via hydration temperature variation analysis,hydration degree analysis,X-ray diffraction(XRD)and scanning electron microscopy(SEM).In the presence of accelerator,the fluidity loss of mortar was increased after 30 minuites,and a coagulation was also observed.Moreover,based on the image of SEM,the formation of C-S-H gels was enhanced in the early hydration.As a result,the hardening accelerator could significantly boost the early strength of concrete,especially within one day of pouring,and shorten steam curing time to meet the demolding strength.展开更多
基金Funded by Star Program(No.1804QB1403200)from Science and Technology Commission of Shanghai Municipality。
文摘A novel crystal nucleus-based cement-hardening accelerator was evaluated using various mortar and segment concrete experiments.The mechanism of hardening acceleration was investigated via hydration temperature variation analysis,hydration degree analysis,X-ray diffraction(XRD)and scanning electron microscopy(SEM).In the presence of accelerator,the fluidity loss of mortar was increased after 30 minuites,and a coagulation was also observed.Moreover,based on the image of SEM,the formation of C-S-H gels was enhanced in the early hydration.As a result,the hardening accelerator could significantly boost the early strength of concrete,especially within one day of pouring,and shorten steam curing time to meet the demolding strength.