为研究种植模式和施氮量对大豆土壤通气环境及结瘤固氮的影响,本研究采用二因素裂区试验设计,主区为种植模式:大豆单作(SS)、玉米/大豆带状套作(MS),副区为不同施氮量:不施氮(NN:0 kg hm^(–2))、减量施氮(RN:45 kg hm^(–2))和常量施氮...为研究种植模式和施氮量对大豆土壤通气环境及结瘤固氮的影响,本研究采用二因素裂区试验设计,主区为种植模式:大豆单作(SS)、玉米/大豆带状套作(MS),副区为不同施氮量:不施氮(NN:0 kg hm^(–2))、减量施氮(RN:45 kg hm^(–2))和常量施氮(CN:60 kg hm^(–2)),监测了大豆生育期内土壤的O_(2)含量和土壤呼吸速率的动态变化规律,分析了各处理的土壤水稳性团聚体、容重和孔隙度差异,探讨了大豆生育期内结瘤量、固氮能力的变化特征。2年数据结果表明,与单作大豆相比,带状套作大豆可提高土壤O_(2)含量、>2 mm粒径团聚体的百分含量、显著增加土壤孔隙度、显著增强后期土壤呼吸的速率,显著降低<1 mm粒径团聚体百分含量与土壤孔隙度;R5期根瘤干重差异不显著,但结瘤数量显著增加39.9%,固氮酶活性与固氮潜力也在此时显著高于单作大豆。各施氮量间,土壤O_(2)含量、0.25~1.00 mm粒径的百分含量、带状套作大豆的土壤呼吸速率以RN处理最高,施氮能降低<0.25 mm粒径的水稳性团聚体的百分含量、土壤容重,施氮显著抑制单作大豆前期的结瘤量、固氮酶活性和固氮潜力,至R5期氮肥的抑制作用有所缓解,减量施氮可提升带状套作大豆后期的结瘤量,显著增强大豆生育期内的固氮酶活性和固氮潜力。带状套作大豆配施减量施氮会促进大团聚体的形成,增加土壤的孔隙度,改善大豆土壤的通气环境状况,保持了较高的土壤O_(2)含量,促进土壤呼吸,有利于大豆后期结瘤固氮。展开更多
Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodul...Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodulation of different legumes to affect N uptake is still unclear.Hence,a two-year experiment was conducted with five planting patterns,i.e.,maize-soybean strip intercropping(IMS),maize-peanut strip intercropping(IMP),and corresponding monocultures(monoculture maize(MM),monoculture soybean(MS),and monoculture peanut(MP)),and two N application rates,i.e.,no N fertilizer(N-)and conventional N fertilizer(N+),to examine relationships between N uptake and root distribution of crops,legume nodulation and soil N availability.Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.Compared with the monoculture system,the N uptake of the intercropping systems increased by 31.7-45.4%in IMS and by 7.4-12.2%in IMP,respectively.The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%,and that of intercropped peanuts significantly decreased by 46.6%compared with the corresponding monocultures.Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.The root length density(RLD)and root surface area density(RSAD)of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.The roots of intercropped peanuts were confined,which resulted in decreased RLD and RSAD compared with the monoculture.The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS,and those of peanut were significantly lower in IMP than in MP.The soil protease,urease,and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture,while the enzyme activities of peanut were significantly lower in IMP than in MP.The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures,while that of IMP was significantly lower than in MP.In summary,the IMS system was more beneficial to N uptake than the IMP system.The intercropping of maize and legumes can promote the N uptake of maize,thus reducing the need for N application and improving agricultural sustainability.展开更多
文摘为研究种植模式和施氮量对大豆土壤通气环境及结瘤固氮的影响,本研究采用二因素裂区试验设计,主区为种植模式:大豆单作(SS)、玉米/大豆带状套作(MS),副区为不同施氮量:不施氮(NN:0 kg hm^(–2))、减量施氮(RN:45 kg hm^(–2))和常量施氮(CN:60 kg hm^(–2)),监测了大豆生育期内土壤的O_(2)含量和土壤呼吸速率的动态变化规律,分析了各处理的土壤水稳性团聚体、容重和孔隙度差异,探讨了大豆生育期内结瘤量、固氮能力的变化特征。2年数据结果表明,与单作大豆相比,带状套作大豆可提高土壤O_(2)含量、>2 mm粒径团聚体的百分含量、显著增加土壤孔隙度、显著增强后期土壤呼吸的速率,显著降低<1 mm粒径团聚体百分含量与土壤孔隙度;R5期根瘤干重差异不显著,但结瘤数量显著增加39.9%,固氮酶活性与固氮潜力也在此时显著高于单作大豆。各施氮量间,土壤O_(2)含量、0.25~1.00 mm粒径的百分含量、带状套作大豆的土壤呼吸速率以RN处理最高,施氮能降低<0.25 mm粒径的水稳性团聚体的百分含量、土壤容重,施氮显著抑制单作大豆前期的结瘤量、固氮酶活性和固氮潜力,至R5期氮肥的抑制作用有所缓解,减量施氮可提升带状套作大豆后期的结瘤量,显著增强大豆生育期内的固氮酶活性和固氮潜力。带状套作大豆配施减量施氮会促进大团聚体的形成,增加土壤的孔隙度,改善大豆土壤的通气环境状况,保持了较高的土壤O_(2)含量,促进土壤呼吸,有利于大豆后期结瘤固氮。
基金supported by the National Natural Science Foundation of China (31872856)the National Key Research and Development Program of China (2016YFD030020205)
文摘Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodulation of different legumes to affect N uptake is still unclear.Hence,a two-year experiment was conducted with five planting patterns,i.e.,maize-soybean strip intercropping(IMS),maize-peanut strip intercropping(IMP),and corresponding monocultures(monoculture maize(MM),monoculture soybean(MS),and monoculture peanut(MP)),and two N application rates,i.e.,no N fertilizer(N-)and conventional N fertilizer(N+),to examine relationships between N uptake and root distribution of crops,legume nodulation and soil N availability.Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.Compared with the monoculture system,the N uptake of the intercropping systems increased by 31.7-45.4%in IMS and by 7.4-12.2%in IMP,respectively.The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%,and that of intercropped peanuts significantly decreased by 46.6%compared with the corresponding monocultures.Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.The root length density(RLD)and root surface area density(RSAD)of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.The roots of intercropped peanuts were confined,which resulted in decreased RLD and RSAD compared with the monoculture.The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS,and those of peanut were significantly lower in IMP than in MP.The soil protease,urease,and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture,while the enzyme activities of peanut were significantly lower in IMP than in MP.The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures,while that of IMP was significantly lower than in MP.In summary,the IMS system was more beneficial to N uptake than the IMP system.The intercropping of maize and legumes can promote the N uptake of maize,thus reducing the need for N application and improving agricultural sustainability.