视频监控业务能够对智能电网中输电线路、变电站等进行监控,实现高效的电力网络运维以及安全生产。考虑视频监控业务的实时性要求、多维用户体验(Quality of Experience,QoE)指标联合优化需求以及资源配置的不协调,文章提出了视频监控...视频监控业务能够对智能电网中输电线路、变电站等进行监控,实现高效的电力网络运维以及安全生产。考虑视频监控业务的实时性要求、多维用户体验(Quality of Experience,QoE)指标联合优化需求以及资源配置的不协调,文章提出了视频监控业务上下行资源联合分配方法。在该方法中,首先联合考虑上行链路资源、下行链路资源以及计算资源的分配,以多维QoE指标(包括视频监控业务的切换频率和卡顿等)优化为目标,建立了基于视频内容处理低时延保障的问题;其次设计了基于凸优化的资源分配搜索方法对所提问题进行求解,最后对所提方案性能进行了仿真评估。展开更多
The lichen species Usnea aurantiaco-atra (Jacq.) Bory is the most dominant vegetation on the Fildes Peninsula, Antarctica. Most individuals grow on rocks, and some are found with mosses. During the 27th and 28th Chi...The lichen species Usnea aurantiaco-atra (Jacq.) Bory is the most dominant vegetation on the Fildes Peninsula, Antarctica. Most individuals grow on rocks, and some are found with mosses. During the 27th and 28th Chinese National Antarctic Research expeditions of the Great Wall Station, U. aurantiaco-atra was observed growing on the lichen thallus of Umbilicaria antarctica Frey & I.M. Lamb, or on wood, which indicated that Usnea aurantiaco-atra could grow on various substrates. The diversities of the symbionts in U. aurantiaco-atra collected in the Fildes Peninsula were investigated using ITS rDNA sequences. The results showed that the sequences from mycobionts of U. aurantiaco-atra growing on various substrates did not exhibit significant differences. All photobionts in this lichen species were the green algae Trebouxia jamesii (Hildreth & Ahmadjian) Gartner. The identical sequences from the photobionts of both Umbilicaria antarctica and Usnea aurantiaco-atra indicated there was an algae pool in this area and different mycobionts could obtain their algal partners from this pool. The variety of substrates for U. aurantiaco-atra suggested its photobiont could be obtained from a mature lichen thallus by vegetative propagation; from other lichen thalli (e.g. Umbilicaria antarctica); or from the surroundings. This study will promote understanding of the distribution of photobionts and the process of lichenization.展开更多
文摘视频监控业务能够对智能电网中输电线路、变电站等进行监控,实现高效的电力网络运维以及安全生产。考虑视频监控业务的实时性要求、多维用户体验(Quality of Experience,QoE)指标联合优化需求以及资源配置的不协调,文章提出了视频监控业务上下行资源联合分配方法。在该方法中,首先联合考虑上行链路资源、下行链路资源以及计算资源的分配,以多维QoE指标(包括视频监控业务的切换频率和卡顿等)优化为目标,建立了基于视频内容处理低时延保障的问题;其次设计了基于凸优化的资源分配搜索方法对所提问题进行求解,最后对所提方案性能进行了仿真评估。
基金supported by State Oceanic Administration, P. R. China (Grant nos. 10/11 GW06, 2011GW12016)the National Natural Science Foundation of China (Grant nos. 31000010, 31270118, 41206189)
文摘The lichen species Usnea aurantiaco-atra (Jacq.) Bory is the most dominant vegetation on the Fildes Peninsula, Antarctica. Most individuals grow on rocks, and some are found with mosses. During the 27th and 28th Chinese National Antarctic Research expeditions of the Great Wall Station, U. aurantiaco-atra was observed growing on the lichen thallus of Umbilicaria antarctica Frey & I.M. Lamb, or on wood, which indicated that Usnea aurantiaco-atra could grow on various substrates. The diversities of the symbionts in U. aurantiaco-atra collected in the Fildes Peninsula were investigated using ITS rDNA sequences. The results showed that the sequences from mycobionts of U. aurantiaco-atra growing on various substrates did not exhibit significant differences. All photobionts in this lichen species were the green algae Trebouxia jamesii (Hildreth & Ahmadjian) Gartner. The identical sequences from the photobionts of both Umbilicaria antarctica and Usnea aurantiaco-atra indicated there was an algae pool in this area and different mycobionts could obtain their algal partners from this pool. The variety of substrates for U. aurantiaco-atra suggested its photobiont could be obtained from a mature lichen thallus by vegetative propagation; from other lichen thalli (e.g. Umbilicaria antarctica); or from the surroundings. This study will promote understanding of the distribution of photobionts and the process of lichenization.