The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to...The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.展开更多
Western Yunnan is composed of several extruded continental microblocks that were generated by the oblique collision between the Indian and Asian continents during the Cenozoic.In this study,the magmatic and tectonic f...Western Yunnan is composed of several extruded continental microblocks that were generated by the oblique collision between the Indian and Asian continents during the Cenozoic.In this study,the magmatic and tectonic frameworks of western Yunnan in the Cenozoic were analyzed based on geochemistry,Sr-Nd-Pb isotopes,and apatite/zircon fission track dating.Magmatism during the Cenozoic in western Yunnan was then divided into three distinctive episodes:alkali granite rocks produced from 55 to 46 Ma were derived from the anatexis of crustal materials;bimodal igneous rocks formed between 37 and 24 Ma were possibly derived from an EMII mantle with a contribution from continental materials;and intermediate-basic volcanic rocks produced in the Tengchong microblocks since-16 Ma are considered to be generated by the partial melting of the upper mantle that was induced by the pulling apart of the dextral Gaoligong strike-slip fault system.Moreover,fission track analysis of apatite and zircon indicates that the regional crustal uplift in western Yunnan possibly began at -34 Ma,with accelerated annealing occurring at -24 Ma,-13 Ma,and -4 Ma.During the past24 Ma,the average denudation rate was -0.32 mm/yr for the faulted block controlled by the Chongshan-Lancang River fault.However,crustal uplift has been relatively gentle in places lacking influence from strike-slip shear zones,with an average denudation rate of-0.2 mm/yr.Combined with strike-slip shear and block rotation in the Cenozoic,the tectonic evolution of western Yunnan since -45Ma can thus be divided into four stages occurring at 45-37 Ma,37-24 Ma,24-13 Ma,and 13-0 Ma.展开更多
High resolution carbon isotope analyses of carbonate and organic carbon from Meishan, South China showed that the variation of δ13Ccarb is marked by three large positive excursions during the Changhsingian (end-Permi...High resolution carbon isotope analyses of carbonate and organic carbon from Meishan, South China showed that the variation of δ13Ccarb is marked by three large positive excursions during the Changhsingian (end-Permian). Carbon isotope stratigraphy during this stage shows three cyclic intervals in δ13Ccarb, with two cycles corresponding to the lower (Paleofusulinid minima Zone) and one corresponding to the upper Changhsingian (P. sinensis Zone). The large positive δ13Ccarb excursions indicate episodes of enhanced burial of isotopically light or-ganic carbon, presumably in response to deep-water anoxia episodically extending into shallow water with the rise of sea level. The organic carbon during the Changhsingian is distinguished into two groups, and the δ13Corg of each group parallels (separately) the more detailed profile of δ13Ccarb, strongly showing that the values of fractionation Δ13Ccab-org remain relatively constant, with only two intervals with anomaly. The enhanced fractionation Δ13Ccab-org with large negative δ13Corg excursions apparently indicates significant inputs from sulfide-oxidizing bacteria and green sulfur bacteria, notably at bed 24 just predating mass extinction. Our evidence appears to support that the ex-tended euxinic water is possible for the main pulse of mass extinction at the end-Permian.展开更多
No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic ...No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%―0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%―1.0%. In terms of the geological practice in the low-mature gas zones and China's main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields, of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 × 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding thermal evolution indices (Ro ) are mainly within the range of about 0.4%―0.8%, the δ 13C1 values of methane vary between-44‰ and-39‰ (correspondingly Ro =0.6%―0.8%), and those of ethane are within the range of-29‰―-26‰, indicating that natural gases in the Turpan-Hami Basin should be designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven natural gases in the Turpan-Hami Basin are low-mature gases. In China a gas field with the gas reserves reaching 300 ×108 m3 can be defined as a large gas field, and thus the proven low-mature gases in the Turpan-Hami Basin are equivalent to the reserves of three large gas fields. Its existence is of great significance in research on and exploration of low-mature gases in China.展开更多
The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and s...The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and seawater (δSDn2O=-4.8‰) added, respectively. The experimental results show that the productivities of H2 and CO2 obviously increased under hydrous conditions and that the productivity of CH4 also remarkably increased in the high-evolution phase of hydrous experiments. Water was involved in the chemical reaction of hydrocarbon generation, and then the hydrogen isotopic composition of methane was affected. There is a linear correlation between the hydrogen isotopic composition of methane and its productivity, as reflected in the three series of experiments. In the case of the same CH4 productivity, the hydrogen isotopic composition of the methane produced in anhydrous experiments was the heaviest, that of the methane produced in seawater-adding experiments came second, and that of the methane produced in deionized water-adding experiments was the ligbtest. The hydrogen isotopic composition of natural gas/methane is affected by the following factors: 1) the characteristics of hydrogen isotopic composition of organic matter in source rocks, 2) the thermal evolution extent of organic matter, and 3) fossil-water media in the natural gas-generation period. The experimental results show that the influence of the fossil-water medium in the natural gas-generation period was lower than that of the other factors.展开更多
基金The Western Light Talent Culture Project of the Chinese Academy of Sciences under contract No.Y404RC1the National Petroleum Major Projects of China under contract No.2016ZX05026-007-005+2 种基金the Key Laboratory of Petroleum Resources Research Fund of the Chinese Academy of Sciences under contract No.KFJJ2013-04the Science and Technology Program of Gansu Province under contract No.1501RJYA006the Key Laboratory Project of Gansu Province of China under contract No.1309RTSA041
文摘The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.
文摘Western Yunnan is composed of several extruded continental microblocks that were generated by the oblique collision between the Indian and Asian continents during the Cenozoic.In this study,the magmatic and tectonic frameworks of western Yunnan in the Cenozoic were analyzed based on geochemistry,Sr-Nd-Pb isotopes,and apatite/zircon fission track dating.Magmatism during the Cenozoic in western Yunnan was then divided into three distinctive episodes:alkali granite rocks produced from 55 to 46 Ma were derived from the anatexis of crustal materials;bimodal igneous rocks formed between 37 and 24 Ma were possibly derived from an EMII mantle with a contribution from continental materials;and intermediate-basic volcanic rocks produced in the Tengchong microblocks since-16 Ma are considered to be generated by the partial melting of the upper mantle that was induced by the pulling apart of the dextral Gaoligong strike-slip fault system.Moreover,fission track analysis of apatite and zircon indicates that the regional crustal uplift in western Yunnan possibly began at -34 Ma,with accelerated annealing occurring at -24 Ma,-13 Ma,and -4 Ma.During the past24 Ma,the average denudation rate was -0.32 mm/yr for the faulted block controlled by the Chongshan-Lancang River fault.However,crustal uplift has been relatively gentle in places lacking influence from strike-slip shear zones,with an average denudation rate of-0.2 mm/yr.Combined with strike-slip shear and block rotation in the Cenozoic,the tectonic evolution of western Yunnan since -45Ma can thus be divided into four stages occurring at 45-37 Ma,37-24 Ma,24-13 Ma,and 13-0 Ma.
基金supported jointly by the National Natural Science Foundation of China (40972092)the Special Program for National Science and Technology (2008ZX05005-01-08)the United Foundation of NSFC and China's Petroleum Chemical Industry (40739902)
文摘High resolution carbon isotope analyses of carbonate and organic carbon from Meishan, South China showed that the variation of δ13Ccarb is marked by three large positive excursions during the Changhsingian (end-Permian). Carbon isotope stratigraphy during this stage shows three cyclic intervals in δ13Ccarb, with two cycles corresponding to the lower (Paleofusulinid minima Zone) and one corresponding to the upper Changhsingian (P. sinensis Zone). The large positive δ13Ccarb excursions indicate episodes of enhanced burial of isotopically light or-ganic carbon, presumably in response to deep-water anoxia episodically extending into shallow water with the rise of sea level. The organic carbon during the Changhsingian is distinguished into two groups, and the δ13Corg of each group parallels (separately) the more detailed profile of δ13Ccarb, strongly showing that the values of fractionation Δ13Ccab-org remain relatively constant, with only two intervals with anomaly. The enhanced fractionation Δ13Ccab-org with large negative δ13Corg excursions apparently indicates significant inputs from sulfide-oxidizing bacteria and green sulfur bacteria, notably at bed 24 just predating mass extinction. Our evidence appears to support that the ex-tended euxinic water is possible for the main pulse of mass extinction at the end-Permian.
基金the Leading Scientific Research Project "The Rules of Accumulation of Low-mature Gases and Biogenic Gases and Techniques for Resource Assessment" undertaken by PetroChina Company Limited
文摘No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%―0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%―1.0%. In terms of the geological practice in the low-mature gas zones and China's main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields, of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 × 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding thermal evolution indices (Ro ) are mainly within the range of about 0.4%―0.8%, the δ 13C1 values of methane vary between-44‰ and-39‰ (correspondingly Ro =0.6%―0.8%), and those of ethane are within the range of-29‰―-26‰, indicating that natural gases in the Turpan-Hami Basin should be designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven natural gases in the Turpan-Hami Basin are low-mature gases. In China a gas field with the gas reserves reaching 300 ×108 m3 can be defined as a large gas field, and thus the proven low-mature gases in the Turpan-Hami Basin are equivalent to the reserves of three large gas fields. Its existence is of great significance in research on and exploration of low-mature gases in China.
基金supported jointly by National Natural Science Foundation of China (Grant No. 40703001) the "Western Doctors’ Project under the Western Light Program" sponsored by the Chinese Academy of Sciences
文摘The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and seawater (δSDn2O=-4.8‰) added, respectively. The experimental results show that the productivities of H2 and CO2 obviously increased under hydrous conditions and that the productivity of CH4 also remarkably increased in the high-evolution phase of hydrous experiments. Water was involved in the chemical reaction of hydrocarbon generation, and then the hydrogen isotopic composition of methane was affected. There is a linear correlation between the hydrogen isotopic composition of methane and its productivity, as reflected in the three series of experiments. In the case of the same CH4 productivity, the hydrogen isotopic composition of the methane produced in anhydrous experiments was the heaviest, that of the methane produced in seawater-adding experiments came second, and that of the methane produced in deionized water-adding experiments was the ligbtest. The hydrogen isotopic composition of natural gas/methane is affected by the following factors: 1) the characteristics of hydrogen isotopic composition of organic matter in source rocks, 2) the thermal evolution extent of organic matter, and 3) fossil-water media in the natural gas-generation period. The experimental results show that the influence of the fossil-water medium in the natural gas-generation period was lower than that of the other factors.