期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PCT与SDI比值对重症细菌性肺炎患者短期预后的预测价值 被引量:6
1
作者 孙国先 刘微丽 +2 位作者 郑庆斌 侯红玲 林慧晶 《中国感染控制杂志》 CAS CSCD 北大核心 2022年第9期885-890,共6页
目的 探讨血清降钙素原(PCT)与肺泡灌洗液辛普森菌群多样性指数(SDI)比值对重症监护病房(ICU)内细菌性肺炎患者短期预后的预测价值。方法 回顾性调查扬州大学附属医院ICU 2019年10月—2021年7月选择肺泡灌洗液宏基因组二代测序(mNGS)技... 目的 探讨血清降钙素原(PCT)与肺泡灌洗液辛普森菌群多样性指数(SDI)比值对重症监护病房(ICU)内细菌性肺炎患者短期预后的预测价值。方法 回顾性调查扬州大学附属医院ICU 2019年10月—2021年7月选择肺泡灌洗液宏基因组二代测序(mNGS)技术的56例细菌性肺炎患者病历资料,依据其入ICU 24 h内急性生理学与慢性健康状况评分Ⅱ(APACHE-Ⅱ)分为非危重症组21例和危重症组35例。以细菌性肺炎造成死亡为终点事件,记录28天转归,并将患者分为生存组38例和死亡组18例。对各组患者的SDI、PCT、C-反应蛋白(CRP)、PCT/SDI、CRP/SDI进行比较分析。结果 与非危重症组比较,危重症组患者血清PCT/SDI、PCT水平均升高,且呼吸机辅助通气时间更长,28天病死率更高(均P<0.05);与存活组比较,死亡组患者SDI较低,PCT/SDI、PCT水平均较高(均P<0.05);SDI与呼吸机辅助通气时间呈负相关(r值为-0.655,P<0.001),PCT水平、PCT/SDI与呼吸机辅助通气时间呈正相关(r值分别为0.660、0.734,均P<0.001)。受试者工作特征曲线(ROC曲线)显示,PCT/SDI预测患者28天死亡的ROC曲线下面积(AUC)为0.851,其次为PCT+SDI(0.845)、PCT(0.808)、SDI(0.785)、CRP/SDI(0.731),PCT/SDI的最佳截断值为11.56时预判患者28天死亡的灵敏度为89.5%,特异度为66.7%。Cox回归分析显示,PCT/SDI值高(HR=1.562,95%CI:1.271~1.920,P=0.031)、PCT水平高(HR=1.106,95%CI:1.021~1.198,P=0.024)是ICU细菌性肺炎患者死亡的独立危险因素。结论 PCT/SDI、PCT、PCT+SDI、SDI、CRP/SDI均可作为ICU细菌性肺炎患者短期预后的评估指标。与其他指标相比,PCT/SDI预测患者短期预后更有价值。 展开更多
关键词 细菌性肺炎 肺泡灌洗液 降钙素原 辛普森多样性指数 预后 价值
下载PDF
Research on Split Augmented Largrangian Shrinkage Algorithm in Magnetic Resonance Imaging Based on Compressed Sensing 被引量:2
2
作者 zheng qing-bin DONG En-qing +3 位作者 YANG Pei LIU Wei JIA Da-yu SUN Hua-kui 《Chinese Journal of Biomedical Engineering(English Edition)》 2014年第3期108-120,共13页
This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MR... This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MRI method based on compressed sensing (CS) with multiple regularizations (two regularizations including total variation (TV) norm and L1 norm or three regularizations consisting of total variation, L1 norm and wavelet tree structure) is proposed in this paper, which is implemented by applying split augmented lagrangian shrinkage algorithm (SALSA). To solve magnetic resonance image reconstruction problems with linear combinations of total variation and L1 norm, we utilized composite spht denoising (CSD) to split the original complex problem into TV norm and L1 norm regularization subproblems which were simple and easy to be solved respectively in this paper. The reconstructed image was obtained from the weighted average of solutions from two subprohlems in an iterative framework. Because each of the splitted subproblems can be regarded as MRI model based on CS with single regularization, and for solving the kind of model, split augmented lagrange algorithm has advantage over existing fast algorithm such as fast iterative shrinkage thresholding(FIST) and two step iterative shrinkage thresholding (TWIST) in convergence speed. Therefore, we proposed to adopt SALSA to solve the subproblems. Moreover, in order to solve magnetic resonance image reconstruction problems with linear combinations of total variation, L1 norm and wavelet tree structure, we can split the original problem into three subproblems in the same manner, which can be processed by existing iteration scheme. A great deal of experimental results show that the proposed methods can effectively reconstruct the original image. Compared with existing algorithms such as TVCMRI, RecPF, CSA, FCSA and WaTMRI, the proposed methods have greatly improved the quality of the reconstructed images and have better visual effect. 展开更多
关键词 magnetic resonance imaging (MRI) compressed sensing (CS) splitaugmented lagrangian total variation(TV) norm L1 norm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部