This paper focuses on the problem of calibrating a pinhole camera from images of profile of a revolution. In this paper, the symmet ry of images of profiles of revolution has been extensively exploited and a prac tica...This paper focuses on the problem of calibrating a pinhole camera from images of profile of a revolution. In this paper, the symmet ry of images of profiles of revolution has been extensively exploited and a prac tical and accurate technique of camera calibration from profiles alone has been developed. Compared with traditional techniques for camera calibration, for inst ance, it may involve taking images of some precisely machined calibration patter n (such as a calibration grid), or edge detection for determining vanish points which are often far from images center or even do not physically exist, or calcu lation of fundamental matrix and Kruppa equations which can be numerically unsta ble, the method presented here uses just profiles of revolution, which are commo nly found in daily life (e.g. bowls and vases), to make the process easier as a result of the reduced cost and increased accessibility of the calibration object s. This paper firstly analyzes the relationship between the symmetry property of profile of revolution and the intrinsic parameters of a camera, and then shows how to use images of profile of revolution to provide enough information for det ermining intrinsic parameters. During the process, high-accurate profile extrac tion algorithm has also been used. Finally, results from real data are presented , demonstrating the efficiency and accuracy of the proposed methods.展开更多
文摘This paper focuses on the problem of calibrating a pinhole camera from images of profile of a revolution. In this paper, the symmet ry of images of profiles of revolution has been extensively exploited and a prac tical and accurate technique of camera calibration from profiles alone has been developed. Compared with traditional techniques for camera calibration, for inst ance, it may involve taking images of some precisely machined calibration patter n (such as a calibration grid), or edge detection for determining vanish points which are often far from images center or even do not physically exist, or calcu lation of fundamental matrix and Kruppa equations which can be numerically unsta ble, the method presented here uses just profiles of revolution, which are commo nly found in daily life (e.g. bowls and vases), to make the process easier as a result of the reduced cost and increased accessibility of the calibration object s. This paper firstly analyzes the relationship between the symmetry property of profile of revolution and the intrinsic parameters of a camera, and then shows how to use images of profile of revolution to provide enough information for det ermining intrinsic parameters. During the process, high-accurate profile extrac tion algorithm has also been used. Finally, results from real data are presented , demonstrating the efficiency and accuracy of the proposed methods.