The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Cell...The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Celle,Kriya,and Niya rivers)to explore the spatial distribution of soil salinization in this area and its underlying mechanisms.Sampling was conducted along each river's watershed,from the Gobi in the upper reaches,through the anthropogenic impact area in the middle reaches,to the desert area in the lower reaches.Soil physical-chemical indicators,including total soluble salts,pH,K+,Na+,Ca2+,Mg2+,SO42-,Cl-,CO32-,HCO3-,organic matter,available nitrogen,available phosphorus,and available potassium,were tested,along with the total dissolved solids of surface water and groundwater.The results revealed that the soil water and nutrient contents in anthropogenic impact area were higher than those in Gobi and desert areas,while the pH and total soluble salts were lower than those in Gobi and desert areas.The ions in the soil of the study area were primarily Cl-,SO42-,K+,and Na+,and the ion concentration of soil salt were positively correlated with surface water and groundwater.Overall,the study area exhibited low soil water content,low clay content,infertile soil,and high soil salinization,dominated by weak to moderate chloride-sulfate types.Compared with Gobi and desert areas,the soil in anthropogenic impact area had higher soil water content,lower pH,lower soluble salts,and higher nutrients,indicating that human farming activities help mitigate salinization.These findings have practical implications for guiding the scientific prevention and control of soil salinization in the arid areas and for promoting sustainable agricultural development.展开更多
Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fiber...Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m^2.展开更多
基金This research was supported by the Tianfu Yongxing Laboratory Organized Research Project Funding(2023KJGG05)the Geological Survey Project of Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau(XGMB202356).
文摘The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Celle,Kriya,and Niya rivers)to explore the spatial distribution of soil salinization in this area and its underlying mechanisms.Sampling was conducted along each river's watershed,from the Gobi in the upper reaches,through the anthropogenic impact area in the middle reaches,to the desert area in the lower reaches.Soil physical-chemical indicators,including total soluble salts,pH,K+,Na+,Ca2+,Mg2+,SO42-,Cl-,CO32-,HCO3-,organic matter,available nitrogen,available phosphorus,and available potassium,were tested,along with the total dissolved solids of surface water and groundwater.The results revealed that the soil water and nutrient contents in anthropogenic impact area were higher than those in Gobi and desert areas,while the pH and total soluble salts were lower than those in Gobi and desert areas.The ions in the soil of the study area were primarily Cl-,SO42-,K+,and Na+,and the ion concentration of soil salt were positively correlated with surface water and groundwater.Overall,the study area exhibited low soil water content,low clay content,infertile soil,and high soil salinization,dominated by weak to moderate chloride-sulfate types.Compared with Gobi and desert areas,the soil in anthropogenic impact area had higher soil water content,lower pH,lower soluble salts,and higher nutrients,indicating that human farming activities help mitigate salinization.These findings have practical implications for guiding the scientific prevention and control of soil salinization in the arid areas and for promoting sustainable agricultural development.
文摘Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m^2.