Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement...Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement factor as functions of diameter and refractive index of inclusions are investigated, more than 10 times that of incident beam is obtained in the simulation. We model the etched crack in close proximity to a real structure, which is characterized by AFM. We find that the peak light intensity of the crack is a function of its cross sectional breadth depth ratio, providing good hints for the effective processing of fused silica samples to improve the damage threshold.展开更多
The structure evolution of fused silica induced by CO2 laser irradiation (with a wavelength of 10.6 μm) is studied in detail.In the non-evaporation mitigation process,the irradiation time should be long enough to com...The structure evolution of fused silica induced by CO2 laser irradiation (with a wavelength of 10.6 μm) is studied in detail.In the non-evaporation mitigation process,the irradiation time should be long enough to completely eliminate damage.However,there is a raised rim around the mitigated site.The rim height is enhanced when the irradiation time increases,and the mitigated site can lead to off-axis and on-axis downstream light intensification.Volume shrinkage occurs during the irradiation and rapid cooling processes,and this may be due to a decrease in the Si O Si bond angle.The distribution of debris overlaps with the maximum phase retardance induced by stress.The debris arouses an enhanced light absorption in the region from 220nm to 800nm.展开更多
文摘Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement factor as functions of diameter and refractive index of inclusions are investigated, more than 10 times that of incident beam is obtained in the simulation. We model the etched crack in close proximity to a real structure, which is characterized by AFM. We find that the peak light intensity of the crack is a function of its cross sectional breadth depth ratio, providing good hints for the effective processing of fused silica samples to improve the damage threshold.
基金Supported by the National High Technology Research and Development Program of China(2008AA8040508)the National Natural Science Foundation of China under Grant No 10904008the Fundamental Research Funds for the Central Universities(ZYGX2011J043).
文摘The structure evolution of fused silica induced by CO2 laser irradiation (with a wavelength of 10.6 μm) is studied in detail.In the non-evaporation mitigation process,the irradiation time should be long enough to completely eliminate damage.However,there is a raised rim around the mitigated site.The rim height is enhanced when the irradiation time increases,and the mitigated site can lead to off-axis and on-axis downstream light intensification.Volume shrinkage occurs during the irradiation and rapid cooling processes,and this may be due to a decrease in the Si O Si bond angle.The distribution of debris overlaps with the maximum phase retardance induced by stress.The debris arouses an enhanced light absorption in the region from 220nm to 800nm.