Small nucleolar RNAs(snoRNAs)represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification,thereby contributing significantly to the maintenance of cellular funct...Small nucleolar RNAs(snoRNAs)represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification,thereby contributing significantly to the maintenance of cellular functions related to protein synthesis.SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression,holding immense potential in controlling human diseases.It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types,stages,metastasis,treatment response and/or prognosis in patients.On the other hand,colorectal cancer(CRC),a prevalent malignancy of the digestive system,is characterized by high incidence and mortality rates,ranking as the third most common cancer type.Recent research indicates that snoRNA dysregulation is associated with CRC,as snoRNA expression significantly differs between normal and cancerous conditions.Consequently,assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC.Nevertheless,current comprehension of the potential roles of snoRNAs in CRC remains limited.This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC,providing valuable insights into the discovery of novel biomarkers,therapeutic targets,and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.展开更多
Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory ...Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
The sine oculis homeobox homolog(SIX)family,a group of transcription factors characterized by a conserved DNA-binding homology domain,plays a critical role in orchestrating embryonic development and organogenesis acro...The sine oculis homeobox homolog(SIX)family,a group of transcription factors characterized by a conserved DNA-binding homology domain,plays a critical role in orchestrating embryonic development and organogenesis across various organisms,including humans.Comprising six distinct members,from SIX1 to SIX6,each member contributes uniquely to the development and differentiation of diverse tissues and organs,underscoring the versatility of the SIX family.Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders,as well as in tumor initiation and progression,highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development.While the development of inhibitors targeting this gene family is still in its early stages,the significant potential of such interventions holds promise for future therapeutic advances.Therefore,this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers,focusing on its critical role in normal organ development and its implications in gastrointestinal cancers,including gastric,pancreatic,colorectal cancer,and hepatocellular carcinomas.In conclusion,this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis,prognosis,and treatment of gastrointestinal cancers.展开更多
The robotic liver resection(RLR)has been increasingly applied in recent years and its benefits shown in some aspects owing to the technical advancement of robotic surgical system,however,controversies still exist.Base...The robotic liver resection(RLR)has been increasingly applied in recent years and its benefits shown in some aspects owing to the technical advancement of robotic surgical system,however,controversies still exist.Based on the foundation of the previous consensus statement,this new consensus document aimed to update clinical recommendations and provide guidance to improve the outcomes of RLR clinical practice.The guideline steering group and guideline expert group were formed by 29 international experts of liver surgery and evidence-based medicine(EBM).Relevant literature was reviewed and analyzed by the evidence evaluation group.According to the WHO Handbook for Guideline Development,the Guidance Principles of Development and Amendment of the Guidelines for Clinical Diagnosis and Treatment in China 2022,a total of 14 recommendations were generated.Among them were 8 recommendations formulated by the GRADE method,and the remaining 6 recommendations were formulated based on literature review and experts’opinion due to insufficient EBM results.This international experts consensus guideline offered guidance for the safe and effective clinical practice and the research direction of RLR in future.展开更多
Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of me...Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of metamaterials is an important limitation on their practical applications for lack of tunability and reconfigurability.Here,we propose a tunable and reconfigurable non-Hermitian piezoelectric metamaterial bar,in which piezoelectric bars connect with resonant circuits,to achieve asymmetric unidirectional perfect absorption(UPA)and symmetric bidirectional perfect absorption(PA)at low frequencies.The two functions can be arbitrarily switched by rearranging shunted circuits.Based on the reverberation-ray matrix(RRM)method,an approach is provided to achieve UPA by setting an exceptional point(EP)in the coupled resonant bandgap.By using the transfer matrix method(TMM)and the finite element method(FEM),it is observed that a non-Hermitian pseudo-band forms between two resonant bandgaps,and the EP appears at the bottom of the pseudo-band.In addition,the genetic algorithm is used to accurately and efficiently design the shunted circuits for desired low-frequency UPA and PA.The present work may provide new strategies for vibration suppression and guided waves manipulation in wide potential applications.展开更多
Ferroptosis is a newly discovered type of cell-regulated death.It is characterized by the accumulation of iron-dependent lipid peroxidation and can be distinguished from other forms of cell-regulated death by differen...Ferroptosis is a newly discovered type of cell-regulated death.It is characterized by the accumulation of iron-dependent lipid peroxidation and can be distinguished from other forms of cell-regulated death by different morphology,biochemistry,and genetics.Recently,studies have shown that ferroptosis is associated with a variety of diseases,including liver,kidney and neurological diseases,as well as cancer.Ferroptosis has been shown to be associated with colorectal epithelial disorders,which can lead to cancerous changes in the gut.However,the potential role of ferroptosis in the occurrence and development of colorectal cancer(CRC)is still controversial.To elucidate the underlying mechanisms of ferroptosis in CRC,this article systematically reviews ferroptosis,and its cellular functions in CRC,for furthering the understanding of the pathogenesis of CRC to aid clinical treatment.展开更多
Colorectal cancer(CRC),the third most common type of cancer worldwide,threaten human health and quality of life.With multidisciplinary,including surgery,chemotherapy and/or radiotherapy,patients with an early diagnosi...Colorectal cancer(CRC),the third most common type of cancer worldwide,threaten human health and quality of life.With multidisciplinary,including surgery,chemotherapy and/or radiotherapy,patients with an early diagnosis of CRC can have a good prognosis.However,metastasis in CRC patients is the main risk factor causing cancer-related death.To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism.On the other hand,the tumor microenvironment(TME)has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies,including CRCs.Among the different factors in the TME,exosomes as extracellular vesicles,function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC.MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly.This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC,especially through the packaging of miRNAs,to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.展开更多
BACKGROUND Immune cells play an important role in regulating the behavior of tumor cells.According to emerging evidence,six-transmembrane epithelial antigen of the prostate 4(STEAP4)performs a crucial part in tumor mi...BACKGROUND Immune cells play an important role in regulating the behavior of tumor cells.According to emerging evidence,six-transmembrane epithelial antigen of the prostate 4(STEAP4)performs a crucial part in tumor microenvironmental immune response and tumorigenesis,and serves as the potential target for cellular and antibody immunotherapy.However,the immunotherapeutic role of STEAP4 in gastric cancer(GC)remains unclear.AIM To investigate the expression of STEAP4 in GC and its relationship with immune infiltrating cells,and explore the potential value of STEAP4 as an immune prognostic indicator in GC.METHODS The expression level of STEAP4 was characterized by immunohistochemistry in tumors and adjacent non-cancerous samples in 96 GC patients.Tumor Immune Estimation Resource was used to study the correlation between STEAP4 and tumor immune infiltration level and immune infiltration gene signature.R package was used to analyze the relationship between STEAP4 expression and immune and stromal scores in GC(GSE62254)by the ESTIMATE algorithm,and Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis were applied to analyze the effect of STEAP4 on clinical prognosis.RESULTS Immunohistochemistry analysis showed that STEAP4 expression was higher in GC tissues than in adjacent tissues,and STEAP4 expression was positively correlated with the clinical stage of GC.In GC,the expression of STEAP4 was positively correlated with the infiltration levels of B cells,CD4+T cells,macrophages,neutrophils,and dendritic cells.The expression level of STEAP4 was strongly correlated with most of the immune markers.In addition,STEAP4 expression was inversely correlated with tumor purity,but correlated with stromal score(r=0.43,P<0.001),immune score(r=0.29,P<0.001)and estimate score(r=0.39,P<0.001).Moreover,stromal,immune,and estimate scores were higher in the STEAP4 high expression group,whereas tumor purity was higher in the STEAP4 Low expression group.The relationship between STEAP4 expression and prognosis of patients with GC was further investigated,and the results showed that high STEAP4 expression was associated with poor overall survival and disease-free survival.In addition,Kaplan-Meier Plotter showed that high expression of STEAP4 was significantly correlated with poor survival of patients with GC.CONCLUSION The current findings suggest an oncogenic role for STEAP4 in GC,with significantly high levels being associated with poor prognosis.Investigation of the GC tumor microenvironment suggests the potential function of STEAP4 is connected with the infiltration of diverse immune cells,which may contribute to the regulation of the tumor microenvironment.In conclusion,STEAP4 may serve as a potential therapeutic target for GC to improve the immune infiltration,as well as serve as a prognostic biomarker for judging the prognosis and immune infiltration status of GC.展开更多
针对多复合材料3D打印制造中利用连续纤维增强模型强度问题,提出利用拓扑优化技术对模型进行增强的方法,提升其力学性能。基于变密度法中的固体各向同向材料惩罚(Solid Isotropic Material with Penalization,SIMP)方法,引入体积分数常...针对多复合材料3D打印制造中利用连续纤维增强模型强度问题,提出利用拓扑优化技术对模型进行增强的方法,提升其力学性能。基于变密度法中的固体各向同向材料惩罚(Solid Isotropic Material with Penalization,SIMP)方法,引入体积分数常量,求解出模型的拓扑结构;建立采用增强材料填充拓扑结构、基础材料填充空洞结构的多复合材料3D打印材料分布模型,从而使得模型的整体结构得到强化。为验证该方法的可行性,以120 mm×80 mm×10 mm的矩形小板为例,利用ANSYS软件建立静力学仿真模型,与未增强模型力学分析结果进行对比,得到采用层间增强、轮廓增强和拓扑增强的模型在Y方向上的位移降低幅度分别为88.90%、87.10%和94.13%,采用拓扑增强的模型位移降低幅度最大;拓扑增强相对于轮廓增强和层间增强在Y方向位移上分别降低了50.79%和54.65%,表明该方法适用于多复合材料3D打印。根据仿真内容进行静力学实验分析,实验结果表明优化结构对比未优化结构在位移上减小了39.6%,证明了该方法对于复合材料3D增强打印具有实用价值。展开更多
基于变密度方法中的SIMP(Solid Isotropic Material with Penalization)模型,提出一种多复合材料3D打印制造的拓扑优化方法对四足机器人腿部结构进行优化设计。采用体积约束下最小应力的优化方式,同时引入复合材料的本构矩阵,使得优化...基于变密度方法中的SIMP(Solid Isotropic Material with Penalization)模型,提出一种多复合材料3D打印制造的拓扑优化方法对四足机器人腿部结构进行优化设计。采用体积约束下最小应力的优化方式,同时引入复合材料的本构矩阵,使得优化结果更加合理。针对四足机器人常见工况进行静力学分析,并对最大位移下的载荷情况进行拓扑优化设计。为了验证优化后腿部结构的强度,分别制备拓扑增强和轮廓增强腿部结构并进行试验分析。试验结果表明,拓扑增强结构最大位移比轮廓增强结构在外摆工况下降低了53.57%。拓扑增强结构承载比在0°和30°外摆工况下比轮廓增强结构分别提升了17.98%和24.57%。通过对四足机器人腿部结构优化前后的试验对比可知,经过拓扑优化设计,四足机器人腿部结构力学性能得到提升,优化设计具有可行性。该拓扑优化方法对于提高产品力学性能,具有一定作用。展开更多
The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high reso...The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.展开更多
BACKGROUND Ras suppressor 1(RSU1),a highly conserved protein,plays an important role in actin cytoskeleton remodeling and cell-extracellular matrix adhesion.Aberration of RSU1 activity can cause changes in cell adhesi...BACKGROUND Ras suppressor 1(RSU1),a highly conserved protein,plays an important role in actin cytoskeleton remodeling and cell-extracellular matrix adhesion.Aberration of RSU1 activity can cause changes in cell adhesion and migration,thereby enhancing tumor proliferation and metastasis.However,the correlation between RSU1 and gastrointestinal cancers(GICs),as well as its prognostic role related to tumor-infiltrating immune cells(TIICs)remains unclear.AIM To shows RSU1 plays a potential promoting role in facilitating tumor immune escape in GIC.METHODS Differential expression of RSU1 in different tumors and their corresponding normal tissues was evaluated by exploring the Gene Expression Profiling Interactive Analysis(GEPIA)dataset.The correlation between RSU1 expression and prognosis of GIC cancer patients was evaluated by Kaplan-Meier plotter.Then,RSU1-correlated genes were screened and functionally characterized via enrichment analysis.The correlation between RSU1 and TIICs was further characterized using the Tumor Immune Estimation Resource(TIMER).In addition,the correlation between RSU1 and immune cell surface molecules was also analyzed by TIMER.RESULTS High RSU1 expression was associated with poor overall survival of gastric cancer patients,exhibiting a hazard ratio(HR)=1.36,first progression HR=1.53,and post progression survival HR=1.6.Specifically,high RSU1 Levels were associated with prognosis of gastric cancer in females,T4 and N3 stages,and Her-2-negative subtypes.Regarding immune-infiltrating cells,RSU1 expression level was positively correlated with infiltration of CD4+T cells,macrophages,neutrophils,and dendritic cells(DCs)in colorectal adenocarcinoma and stomach adenocarcinoma.RSU1 expression was also predicted to be strongly correlated with immune marker sets in M2 macrophage,DCs and T cell exhaustion in GICs.CONCLUSION In gastrointestinal cancers,RSU1 is increased in tumor tissues,and predicts poor survival of patients.Increased RSU1 may be involved in promoting macrophage polarization,DC infiltration,and T cell exhaustion,inducing tumor immune escape and the development of tumors in GICs.We suggest that RSU1 is a promising prognostic biomarker reflecting immune infiltration level of GICs,as well as a potential therapeutic target for precision treatment through improving the immune response.展开更多
基金the National Natural Science Foundation of China,No.82273457Guangdong Basic and Applied Basic Research Foundation,No.2021A1515012180 and No.2023A1515012762+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040and Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘Small nucleolar RNAs(snoRNAs)represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification,thereby contributing significantly to the maintenance of cellular functions related to protein synthesis.SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression,holding immense potential in controlling human diseases.It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types,stages,metastasis,treatment response and/or prognosis in patients.On the other hand,colorectal cancer(CRC),a prevalent malignancy of the digestive system,is characterized by high incidence and mortality rates,ranking as the third most common cancer type.Recent research indicates that snoRNA dysregulation is associated with CRC,as snoRNA expression significantly differs between normal and cancerous conditions.Consequently,assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC.Nevertheless,current comprehension of the potential roles of snoRNAs in CRC remains limited.This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC,providing valuable insights into the discovery of novel biomarkers,therapeutic targets,and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.
基金the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2021A1515012180,2023A1515012762 and No.2019A1515010962+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金Supported by the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2023A1515012762 and No.2021A1515010846+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘The sine oculis homeobox homolog(SIX)family,a group of transcription factors characterized by a conserved DNA-binding homology domain,plays a critical role in orchestrating embryonic development and organogenesis across various organisms,including humans.Comprising six distinct members,from SIX1 to SIX6,each member contributes uniquely to the development and differentiation of diverse tissues and organs,underscoring the versatility of the SIX family.Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders,as well as in tumor initiation and progression,highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development.While the development of inhibitors targeting this gene family is still in its early stages,the significant potential of such interventions holds promise for future therapeutic advances.Therefore,this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers,focusing on its critical role in normal organ development and its implications in gastrointestinal cancers,including gastric,pancreatic,colorectal cancer,and hepatocellular carcinomas.In conclusion,this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis,prognosis,and treatment of gastrointestinal cancers.
文摘The robotic liver resection(RLR)has been increasingly applied in recent years and its benefits shown in some aspects owing to the technical advancement of robotic surgical system,however,controversies still exist.Based on the foundation of the previous consensus statement,this new consensus document aimed to update clinical recommendations and provide guidance to improve the outcomes of RLR clinical practice.The guideline steering group and guideline expert group were formed by 29 international experts of liver surgery and evidence-based medicine(EBM).Relevant literature was reviewed and analyzed by the evidence evaluation group.According to the WHO Handbook for Guideline Development,the Guidance Principles of Development and Amendment of the Guidelines for Clinical Diagnosis and Treatment in China 2022,a total of 14 recommendations were generated.Among them were 8 recommendations formulated by the GRADE method,and the remaining 6 recommendations were formulated based on literature review and experts’opinion due to insufficient EBM results.This international experts consensus guideline offered guidance for the safe and effective clinical practice and the research direction of RLR in future.
基金the National Natural Science Foundation of China(Nos.11991033 and 11890681)。
文摘Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of metamaterials is an important limitation on their practical applications for lack of tunability and reconfigurability.Here,we propose a tunable and reconfigurable non-Hermitian piezoelectric metamaterial bar,in which piezoelectric bars connect with resonant circuits,to achieve asymmetric unidirectional perfect absorption(UPA)and symmetric bidirectional perfect absorption(PA)at low frequencies.The two functions can be arbitrarily switched by rearranging shunted circuits.Based on the reverberation-ray matrix(RRM)method,an approach is provided to achieve UPA by setting an exceptional point(EP)in the coupled resonant bandgap.By using the transfer matrix method(TMM)and the finite element method(FEM),it is observed that a non-Hermitian pseudo-band forms between two resonant bandgaps,and the EP appears at the bottom of the pseudo-band.In addition,the genetic algorithm is used to accurately and efficiently design the shunted circuits for desired low-frequency UPA and PA.The present work may provide new strategies for vibration suppression and guided waves manipulation in wide potential applications.
基金National Natural Science Foundation of China,No.81501539Natural Science Foundation of Guangdong Province,No.2021A1515012180 and 2016A030312008+2 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2004Science and Technology Special Project of Guangdong Province,No.210715216902829Dengfeng Project”for the Construction of High-level Hospitals in Guangdong Province-First Affiliated Hospital of Shantou University College Supporting Funding,No.202003-10.
文摘Ferroptosis is a newly discovered type of cell-regulated death.It is characterized by the accumulation of iron-dependent lipid peroxidation and can be distinguished from other forms of cell-regulated death by different morphology,biochemistry,and genetics.Recently,studies have shown that ferroptosis is associated with a variety of diseases,including liver,kidney and neurological diseases,as well as cancer.Ferroptosis has been shown to be associated with colorectal epithelial disorders,which can lead to cancerous changes in the gut.However,the potential role of ferroptosis in the occurrence and development of colorectal cancer(CRC)is still controversial.To elucidate the underlying mechanisms of ferroptosis in CRC,this article systematically reviews ferroptosis,and its cellular functions in CRC,for furthering the understanding of the pathogenesis of CRC to aid clinical treatment.
基金Supported by National Natural Science Foundation of China,No. 82273457Natural Science Foundation of Guangdong Province,No. 2021A1515012180 and 2016A030312008+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No. 2021ZDZX2040Science and Technology Special Project of Guangdong Province,No. 210715216902829
文摘Colorectal cancer(CRC),the third most common type of cancer worldwide,threaten human health and quality of life.With multidisciplinary,including surgery,chemotherapy and/or radiotherapy,patients with an early diagnosis of CRC can have a good prognosis.However,metastasis in CRC patients is the main risk factor causing cancer-related death.To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism.On the other hand,the tumor microenvironment(TME)has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies,including CRCs.Among the different factors in the TME,exosomes as extracellular vesicles,function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC.MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly.This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC,especially through the packaging of miRNAs,to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
基金the National Natural Science Foundation of China,No.82273457 and No.81501539Guangdong Basic and Applied Basic Research Foundation,No.2023A1515012762 and No.2021A1515012180+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘BACKGROUND Immune cells play an important role in regulating the behavior of tumor cells.According to emerging evidence,six-transmembrane epithelial antigen of the prostate 4(STEAP4)performs a crucial part in tumor microenvironmental immune response and tumorigenesis,and serves as the potential target for cellular and antibody immunotherapy.However,the immunotherapeutic role of STEAP4 in gastric cancer(GC)remains unclear.AIM To investigate the expression of STEAP4 in GC and its relationship with immune infiltrating cells,and explore the potential value of STEAP4 as an immune prognostic indicator in GC.METHODS The expression level of STEAP4 was characterized by immunohistochemistry in tumors and adjacent non-cancerous samples in 96 GC patients.Tumor Immune Estimation Resource was used to study the correlation between STEAP4 and tumor immune infiltration level and immune infiltration gene signature.R package was used to analyze the relationship between STEAP4 expression and immune and stromal scores in GC(GSE62254)by the ESTIMATE algorithm,and Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis were applied to analyze the effect of STEAP4 on clinical prognosis.RESULTS Immunohistochemistry analysis showed that STEAP4 expression was higher in GC tissues than in adjacent tissues,and STEAP4 expression was positively correlated with the clinical stage of GC.In GC,the expression of STEAP4 was positively correlated with the infiltration levels of B cells,CD4+T cells,macrophages,neutrophils,and dendritic cells.The expression level of STEAP4 was strongly correlated with most of the immune markers.In addition,STEAP4 expression was inversely correlated with tumor purity,but correlated with stromal score(r=0.43,P<0.001),immune score(r=0.29,P<0.001)and estimate score(r=0.39,P<0.001).Moreover,stromal,immune,and estimate scores were higher in the STEAP4 high expression group,whereas tumor purity was higher in the STEAP4 Low expression group.The relationship between STEAP4 expression and prognosis of patients with GC was further investigated,and the results showed that high STEAP4 expression was associated with poor overall survival and disease-free survival.In addition,Kaplan-Meier Plotter showed that high expression of STEAP4 was significantly correlated with poor survival of patients with GC.CONCLUSION The current findings suggest an oncogenic role for STEAP4 in GC,with significantly high levels being associated with poor prognosis.Investigation of the GC tumor microenvironment suggests the potential function of STEAP4 is connected with the infiltration of diverse immune cells,which may contribute to the regulation of the tumor microenvironment.In conclusion,STEAP4 may serve as a potential therapeutic target for GC to improve the immune infiltration,as well as serve as a prognostic biomarker for judging the prognosis and immune infiltration status of GC.
文摘针对多复合材料3D打印制造中利用连续纤维增强模型强度问题,提出利用拓扑优化技术对模型进行增强的方法,提升其力学性能。基于变密度法中的固体各向同向材料惩罚(Solid Isotropic Material with Penalization,SIMP)方法,引入体积分数常量,求解出模型的拓扑结构;建立采用增强材料填充拓扑结构、基础材料填充空洞结构的多复合材料3D打印材料分布模型,从而使得模型的整体结构得到强化。为验证该方法的可行性,以120 mm×80 mm×10 mm的矩形小板为例,利用ANSYS软件建立静力学仿真模型,与未增强模型力学分析结果进行对比,得到采用层间增强、轮廓增强和拓扑增强的模型在Y方向上的位移降低幅度分别为88.90%、87.10%和94.13%,采用拓扑增强的模型位移降低幅度最大;拓扑增强相对于轮廓增强和层间增强在Y方向位移上分别降低了50.79%和54.65%,表明该方法适用于多复合材料3D打印。根据仿真内容进行静力学实验分析,实验结果表明优化结构对比未优化结构在位移上减小了39.6%,证明了该方法对于复合材料3D增强打印具有实用价值。
文摘基于变密度方法中的SIMP(Solid Isotropic Material with Penalization)模型,提出一种多复合材料3D打印制造的拓扑优化方法对四足机器人腿部结构进行优化设计。采用体积约束下最小应力的优化方式,同时引入复合材料的本构矩阵,使得优化结果更加合理。针对四足机器人常见工况进行静力学分析,并对最大位移下的载荷情况进行拓扑优化设计。为了验证优化后腿部结构的强度,分别制备拓扑增强和轮廓增强腿部结构并进行试验分析。试验结果表明,拓扑增强结构最大位移比轮廓增强结构在外摆工况下降低了53.57%。拓扑增强结构承载比在0°和30°外摆工况下比轮廓增强结构分别提升了17.98%和24.57%。通过对四足机器人腿部结构优化前后的试验对比可知,经过拓扑优化设计,四足机器人腿部结构力学性能得到提升,优化设计具有可行性。该拓扑优化方法对于提高产品力学性能,具有一定作用。
基金supported in part by the National Natural Science Foundation of China(Nos.62101039,62201051)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.
基金Supported by the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2023A1515012762+2 种基金and 2021A1515012180Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘BACKGROUND Ras suppressor 1(RSU1),a highly conserved protein,plays an important role in actin cytoskeleton remodeling and cell-extracellular matrix adhesion.Aberration of RSU1 activity can cause changes in cell adhesion and migration,thereby enhancing tumor proliferation and metastasis.However,the correlation between RSU1 and gastrointestinal cancers(GICs),as well as its prognostic role related to tumor-infiltrating immune cells(TIICs)remains unclear.AIM To shows RSU1 plays a potential promoting role in facilitating tumor immune escape in GIC.METHODS Differential expression of RSU1 in different tumors and their corresponding normal tissues was evaluated by exploring the Gene Expression Profiling Interactive Analysis(GEPIA)dataset.The correlation between RSU1 expression and prognosis of GIC cancer patients was evaluated by Kaplan-Meier plotter.Then,RSU1-correlated genes were screened and functionally characterized via enrichment analysis.The correlation between RSU1 and TIICs was further characterized using the Tumor Immune Estimation Resource(TIMER).In addition,the correlation between RSU1 and immune cell surface molecules was also analyzed by TIMER.RESULTS High RSU1 expression was associated with poor overall survival of gastric cancer patients,exhibiting a hazard ratio(HR)=1.36,first progression HR=1.53,and post progression survival HR=1.6.Specifically,high RSU1 Levels were associated with prognosis of gastric cancer in females,T4 and N3 stages,and Her-2-negative subtypes.Regarding immune-infiltrating cells,RSU1 expression level was positively correlated with infiltration of CD4+T cells,macrophages,neutrophils,and dendritic cells(DCs)in colorectal adenocarcinoma and stomach adenocarcinoma.RSU1 expression was also predicted to be strongly correlated with immune marker sets in M2 macrophage,DCs and T cell exhaustion in GICs.CONCLUSION In gastrointestinal cancers,RSU1 is increased in tumor tissues,and predicts poor survival of patients.Increased RSU1 may be involved in promoting macrophage polarization,DC infiltration,and T cell exhaustion,inducing tumor immune escape and the development of tumors in GICs.We suggest that RSU1 is a promising prognostic biomarker reflecting immune infiltration level of GICs,as well as a potential therapeutic target for precision treatment through improving the immune response.