期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
人体跌倒检测技术研究分类综述 被引量:7
1
作者 郑杨娇子 张上 《长江信息通信》 2021年第1期15-18,共4页
据近年来的研究统计数据发现,年龄对跌倒的影响因素最为显著。在65岁及其以上的人群中,每年跌倒的人数大约占30%。因此及时检测出老年人的跌倒行为,并做出应对措施是极具现实意义的一项研究内容,同时对于即将到来的社会老龄化挑战也具... 据近年来的研究统计数据发现,年龄对跌倒的影响因素最为显著。在65岁及其以上的人群中,每年跌倒的人数大约占30%。因此及时检测出老年人的跌倒行为,并做出应对措施是极具现实意义的一项研究内容,同时对于即将到来的社会老龄化挑战也具有非常重要的研究价值。从不同的实现方法来看,跌倒检测技术大致分为以下三种:基于计算机视觉、基于场景传感器和基于可穿戴式设备。文章对每类检测技术的系统原理以及各自特点进行了初步的讨论和总结。 展开更多
关键词 跌倒检测 计算机视觉 传感器 可穿戴式设备
下载PDF
基于长短时记忆网络及变体的跌倒检测和人体行为识别系统 被引量:3
2
作者 熊昕 郑杨娇子 张上 《信息通信》 2020年第2期65-67,共3页
为应对人口老龄化带来的跌倒事件上升以及提高跌倒检测的准确度,设计了一种可穿戴式基于神经网络的跌倒检测和人体行为识别系统.提出基于长短时记忆网络及变体的跌倒检测及行为识别算法,将训练好的网络参数移植到研发的可穿戴式跌倒检... 为应对人口老龄化带来的跌倒事件上升以及提高跌倒检测的准确度,设计了一种可穿戴式基于神经网络的跌倒检测和人体行为识别系统.提出基于长短时记忆网络及变体的跌倒检测及行为识别算法,将训练好的网络参数移植到研发的可穿戴式跌倒检测设备,实现对跌倒和其他行为检测,将异常行为结果、生理信息传输至监护人手机微信小程序,对被监护人的异常行为、定位信息进行监控.并且在对跌倒的种类和其他类跌倒行为区分检测中,精确率保持了较高的稳定水平. 展开更多
关键词 跌倒及行为检测 长短时记忆网络变体 监护系统
下载PDF
Research on Fall Detection Based on Improved Human Posture Estimation Algorithm 被引量:1
3
作者 zheng yangjiaozi ZHANG Shang 《Instrumentation》 2021年第4期18-33,共16页
According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behav... According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behavior occurs.In this paper,a fall detection model based on improved human posture estimation algorithm is proposed.The improved human posture estimation algorithm is implemented on the basis of Openpose.An im-proved strategy based on depthwise separable convolution combined with HDC structure is proposed.The depthwise separable convolution is used to replace the convolution neural network structure,which makes the network lightweight and reduces the redundant layer in the network.At the same time,in order to ensure that the image features are not lost and ensure the accuracy of detecting human joint points,HDC structure is introduced.Experiments show that the improved algorithm with HDC structure has higher accuracy in joint point detection.Then,human posture estimation is applied to fall detection research,and fall event modeling is carried out through fall feature extraction.The designed convolution neural network model is used to classify and distinguish falls.The experimental results show that our method achieves 98.53%,97.71%and 97.20%accuracy on three public fall detection data sets.Compared with the experimental results of other methods on the same data set,the model designed in this paper has a certain improvement in system accuracy.The sensitivity is also improved,which will reduce the error detection probability of the system.In addition,this paper also verifies the real-time performance of the model.Even if researchers are experimenting with low-level hardware,it can ensure a certain detection speed without too much delay. 展开更多
关键词 Fall Detection Human Posture Estimation Depthwise Separable Convolution Convolutional Neural Networks Feature Extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部