A distinguishing characteristic of normal and cancer cells is the difference in their nuclear chromatin content and distribution.This difference can be revealed by the transmission spectra of nuclei stained with a pH-...A distinguishing characteristic of normal and cancer cells is the difference in their nuclear chromatin content and distribution.This difference can be revealed by the transmission spectra of nuclei stained with a pH-sensitive stain.Here,we used hematoxylin-eosin(HE)to stain hepatic carcinoma tissues and obtained spectral-spatial data from their nuclei using hyper-spectral microscopy.The transmission spectra of the nuclei were then used to train a support vector machine(SVM)model for cell classification.Especially,we found that the chromatin distribution in cancer cells is more uniform,because of which the correlation coefficients for the spectra at different points in their nuclei are higher.Consequently,we exploited this feature to improve the SVM model.The sensitivity and specificity for the identification of cancer cells could be increased to 99%and 98%,respectively.We also designed an image-processing method for the extraction of information from cell nuclei to automate the identification process.展开更多
In this research,a new method based on the hyperspectral imaging for searching the best decocting time of sun dried ginseng is reported.The spectral images at diferent decocting time of test sample have been taken by ...In this research,a new method based on the hyperspectral imaging for searching the best decocting time of sun dried ginseng is reported.The spectral images at diferent decocting time of test sample have been taken by the st aring hyperspectral fAuorescence imaging systen and the solubility of active ingredients have been discussed by analyzing the changes on the spectral.curves.The spectr al range of the system is 400-720nm and the spectral resolution is 5nm.In the decocting process,the active ingredients of nonsoaked ginseng was dissolved in the tissue fluid at first,and reached equilibrium condition at last after the precipitation-dissolution reciprocating process of boiling.At last,the experiment al results show that the best decoction time of sun dried ginseng is about 60 min after boiling.展开更多
The content of berberine hydrochloride(BH)in compound berberine tablets(CBTs)is subject to strict requirements.Its content is usually measured based on chemical analysis.In this paper,the fluorescence spectral imaging...The content of berberine hydrochloride(BH)in compound berberine tablets(CBTs)is subject to strict requirements.Its content is usually measured based on chemical analysis.In this paper,the fluorescence spectral imaging method was used to study the relative content of BH from a physics perspective.By comparing the relative fluorescence intensity of self-made CBTs with di®erent mass percentages of BH,a linear positive relationship was observed between the BH content and the relative fluorescence intensity,and accordingly the quality of CBTs of different brands was evaluated.The results indicate that the fluorescence spectral imaging method can be a simple,fast and nondestructive semi-quantitative analysis method to determine the content of BH in CBTs,and this method has great potential in the quality control of CBTs.展开更多
A promising series of Ho_(y)Nd_(x)Pb_((1-x-y))F_2(x = 0, 0.01, 0.02, 0.03, 0.04;y = 0.02) crystals was grown by the Bridgman method. The influence of the Nd^(3+)ions concentration on mid-infrared(~2.0, ~2.9 and ~3.9 ...A promising series of Ho_(y)Nd_(x)Pb_((1-x-y))F_2(x = 0, 0.01, 0.02, 0.03, 0.04;y = 0.02) crystals was grown by the Bridgman method. The influence of the Nd^(3+)ions concentration on mid-infrared(~2.0, ~2.9 and ~3.9 μm)fluorescence emissions of Ho^(3+)ions in the PbF_(2) crystal excited by 808 nm laser diode was investigated in this work. The energy transfer mechanism between Nd^(3+)ions and Ho~(3+)ions under different concentrations of the Nd^(3+)ions was systematically analyzed. The results show that the Nd^(3+)ions have good sensitization and deactivation effect on the Ho^(3+)ions to stimulate the mid-infrared fluorescence emissions. The experimental analysis proves that the sensitization efficiency of the Nd^(3+)ions is relatively stable at around 93.45% with varying Nd^(3+)-doping concentrations. Concentration dependence studies indicate that the concentration of the Nd^(3+)ions has significant influence on mid-infrared emissions.When the doping concentration of the Nd^(3+)ions is up to 2.0 at%, the intensity of ~2.0, ~2.9 and ~3.9 μm emissions all reach the maximum. The output characteristics of a 3.9 μm laser are simulated, and it is found that with the increase of the Nd^(3+)-doping concentration, the peak power, pulse width, and peak energy all meet the trend of first increasing and then decreasing, and Ho_(0.02)Nd_(0.02)Pb_(0.96)F_(2) crystal displays the best performance. All the results show that the Nd^(3+)/Ho^(3+)co-doped PbF_(2) crystals might act as a useful optical medium for mid-infrared laser applications.展开更多
Optical singularity states,which significantly affect propagation properties of light in free space or optical medium,can be geometrically classified into screw and edge types.These different types of singularity stat...Optical singularity states,which significantly affect propagation properties of light in free space or optical medium,can be geometrically classified into screw and edge types.These different types of singularity states do not exhibit direct connection,being decoupled from each other in the absence of external perturbations.Here we demonstrate a novel optical process in which a higher-order edge singularity state initially nested in the propagating Gaussian light field gradually involves into a screw singularity with a new-born topological charge determined by order of the edge state.The considered edge state comprises an equal superposition of oppositely charged vortex and antivortex modes.We theoretically and experimentally realize this edge-to-screw conversion process by introducing intrinsic vortex–antivortex interaction.We also present a geometrical representation for mapping this dynamical process,based on the higher-order orbital Poincarésphere.Within this framework,the edge-to-screw conversion is explained by a mapping of state evolution from the equator to the north or south pole of the Poincarésphere.Our demonstration provides a novel approach for manipulating singularity state by the intrinsic vortex–antivortex interactions.The presented phenomenon can be also generalized to other wave systems such as matter wave,water wave,and acoustic wave.展开更多
Rabi oscillations express a phenomenon of periodic conversion between two wave states in a coupled system.The finding of Rabi oscillation has led to important applications in many different disciplines.Despite great p...Rabi oscillations express a phenomenon of periodic conversion between two wave states in a coupled system.The finding of Rabi oscillation has led to important applications in many different disciplines.Despite great progress,it is still unknown whether the Rabi oscillating state can be excited in the framework of the higher-order vector vortex regime.Here,we demonstrate in theory that the higher-order vector vortex light beams can be Rabi oscillating during evolution in an optical coupling system.This new classical oscillating state of light is characterized by a topologically shaped wavefront and coupled with spatially varying polarization.The vector vortex state exhibits a harmonic oscillatory property in the resonant and nonresonant conditions but differs greatly in Rabi oscillating frequencies.During Rabi oscillation,the complex state maintains its topology and intensity profile,while its intrinsic polarization pattern varies adiabatically in a periodic manner.We present an interpretation of the Rabi oscillation of the higher-order wave states in terms of the coupled-mode theory.Furthermore,we reveal a symmetry-protected transition between two Rabi oscillating modes,driven by a slowly varying phase mismatch.This Rabi transition has not been reported in either quantum mechanics or any other physical setting.This work advances the research of Rabi oscillation into the higher-order regime,and it may lead to novel applications in classical and quantum optics.展开更多
Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics,triggering substantial investigations in different disciplines and various important applications both in the classical and quantum r...Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics,triggering substantial investigations in different disciplines and various important applications both in the classical and quantum regimes.So far,two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves,while a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive.Here we report on the experimental and theoretical observation and control of spin–orbit-coupled Rabi oscillations in the higher-order regime of light.We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-crystal interaction.We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes,which are effectively controlled by a beam-dependent synthetic magnetic field.We introduce an electrically tunable platform,allowing fine control of transition between different oscillatory modes,resulting in an emission of orbital-angular-momentum beams with tunable topological structures.Our results constitute a general framework to explore spin–orbit couplings in the higher-order regime,offering routes to manipulating the spin and orbital angular momentum in three and four dimensions.The close analogy with the Pauli equation in quantum mechanics,nonlinear optics,etc.,implies that the demonstrated concept can be readily generalized to different disciplines.展开更多
An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which ...An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.展开更多
The most widely used method of identification of microbial morphology and structure is microscopy,but it can be difficult to distinguish between pathogens with a similar appearance.Existing fluorescent staining method...The most widely used method of identification of microbial morphology and structure is microscopy,but it can be difficult to distinguish between pathogens with a similar appearance.Existing fluorescent staining methods require a combination of a variety of fluorescent materials to meet this demand.In this study,unique concentration-dependent fluorescent carbon dots(CDs)were synthesized for the identification and quantification of pathogens.The emission wavelength of the CDs could be tuned spanning the full visible region by virtue of aggregation-induced narrowing of bandgaps.This tunable emission wavelength of the specific concentration response to diverse microbes can be used to distinguish microorganisms with a similar appearance,even in a same genus.A hyperspectral microscopy system was demonstrated to distinguish Aspergillus flavus and A.fumigatus based on the results above.The identification accuracy of the two similar-looking pathogens can be close to 100%,and the relative proportions and spatial distributions can also be profiled from the mixture of the pathogens.This technique can provide a solution to the fast detection of microorganisms and is potentially applicable to a wide range of problems in areas such as healthcare,food preparation,biotechnology,and health emergency.展开更多
Optical superoscillation refers to an intriguing phenomenon of a wave packet that can oscillate locally faster than its highest Fourier component,which potentially produces an extremely localized wave in the far field...Optical superoscillation refers to an intriguing phenomenon of a wave packet that can oscillate locally faster than its highest Fourier component,which potentially produces an extremely localized wave in the far field.It provides an alternative way to overcome the diffraction limit,hence improving the resolution of an optical microscopy system.However,the optical superoscillatory waves are inevitably accompanied by strong side lobes,which limits their fields of view and,hence,potential applications.Here,we report both experimentally and theoretically a new superoscillatory wave form,which not only produces significant feature size down to deep subwavelength,but also completely eliminates side lobes in a particular dimension.We demonstrate a new mechanism for achieving such a wave form based on a pair of moonlike sharp-edge apertures.The resultant superoscillatory wave exhibits Bessel-like forms,hence allowing long-distance propagation of subwavelength structures.The result facilitates the study of optical superoscillation and on a fundamental level eliminates the compromise between the superoscillatory feature size and the field of view.展开更多
基金This paper was supported by the National Key Research and Development Program of China(2017YFB1104500)National Natural Science Foundation of China(61605062,61735005 and 11704155)+2 种基金Science and Technology Planning Project of Guangdong Province(2018B030323017)Research Project of Scientific Research Cultivation and Innovation Fund of Jinan University(11617329)Guangzhou Science and Technology Project(201903010042 and 201904010294).
文摘A distinguishing characteristic of normal and cancer cells is the difference in their nuclear chromatin content and distribution.This difference can be revealed by the transmission spectra of nuclei stained with a pH-sensitive stain.Here,we used hematoxylin-eosin(HE)to stain hepatic carcinoma tissues and obtained spectral-spatial data from their nuclei using hyper-spectral microscopy.The transmission spectra of the nuclei were then used to train a support vector machine(SVM)model for cell classification.Especially,we found that the chromatin distribution in cancer cells is more uniform,because of which the correlation coefficients for the spectra at different points in their nuclei are higher.Consequently,we exploited this feature to improve the SVM model.The sensitivity and specificity for the identification of cancer cells could be increased to 99%and 98%,respectively.We also designed an image-processing method for the extraction of information from cell nuclei to automate the identification process.
文摘In this research,a new method based on the hyperspectral imaging for searching the best decocting time of sun dried ginseng is reported.The spectral images at diferent decocting time of test sample have been taken by the st aring hyperspectral fAuorescence imaging systen and the solubility of active ingredients have been discussed by analyzing the changes on the spectral.curves.The spectr al range of the system is 400-720nm and the spectral resolution is 5nm.In the decocting process,the active ingredients of nonsoaked ginseng was dissolved in the tissue fluid at first,and reached equilibrium condition at last after the precipitation-dissolution reciprocating process of boiling.At last,the experiment al results show that the best decoction time of sun dried ginseng is about 60 min after boiling.
基金The authors would like to acknowledge the support of the Ph.D.research startup foundation of Guangdong Medical University (2XB14006).
文摘The content of berberine hydrochloride(BH)in compound berberine tablets(CBTs)is subject to strict requirements.Its content is usually measured based on chemical analysis.In this paper,the fluorescence spectral imaging method was used to study the relative content of BH from a physics perspective.By comparing the relative fluorescence intensity of self-made CBTs with di®erent mass percentages of BH,a linear positive relationship was observed between the BH content and the relative fluorescence intensity,and accordingly the quality of CBTs of different brands was evaluated.The results indicate that the fluorescence spectral imaging method can be a simple,fast and nondestructive semi-quantitative analysis method to determine the content of BH in CBTs,and this method has great potential in the quality control of CBTs.
基金Project supported by the National Natural Science Foundation of China(51972149,51872307,61935010,51702124)Key-Area Research and Development Program of Guangdong Province(2020B090922006)。
文摘A promising series of Ho_(y)Nd_(x)Pb_((1-x-y))F_2(x = 0, 0.01, 0.02, 0.03, 0.04;y = 0.02) crystals was grown by the Bridgman method. The influence of the Nd^(3+)ions concentration on mid-infrared(~2.0, ~2.9 and ~3.9 μm)fluorescence emissions of Ho^(3+)ions in the PbF_(2) crystal excited by 808 nm laser diode was investigated in this work. The energy transfer mechanism between Nd^(3+)ions and Ho~(3+)ions under different concentrations of the Nd^(3+)ions was systematically analyzed. The results show that the Nd^(3+)ions have good sensitization and deactivation effect on the Ho^(3+)ions to stimulate the mid-infrared fluorescence emissions. The experimental analysis proves that the sensitization efficiency of the Nd^(3+)ions is relatively stable at around 93.45% with varying Nd^(3+)-doping concentrations. Concentration dependence studies indicate that the concentration of the Nd^(3+)ions has significant influence on mid-infrared emissions.When the doping concentration of the Nd^(3+)ions is up to 2.0 at%, the intensity of ~2.0, ~2.9 and ~3.9 μm emissions all reach the maximum. The output characteristics of a 3.9 μm laser are simulated, and it is found that with the increase of the Nd^(3+)-doping concentration, the peak power, pulse width, and peak energy all meet the trend of first increasing and then decreasing, and Ho_(0.02)Nd_(0.02)Pb_(0.96)F_(2) crystal displays the best performance. All the results show that the Nd^(3+)/Ho^(3+)co-doped PbF_(2) crystals might act as a useful optical medium for mid-infrared laser applications.
基金National Natural Science Foundation of China(12304358,12374306,62175091)Guangzhou Science and Technology Program(202201020061)Fundamental Research Funds for the Central Universities(21623331)。
文摘Optical singularity states,which significantly affect propagation properties of light in free space or optical medium,can be geometrically classified into screw and edge types.These different types of singularity states do not exhibit direct connection,being decoupled from each other in the absence of external perturbations.Here we demonstrate a novel optical process in which a higher-order edge singularity state initially nested in the propagating Gaussian light field gradually involves into a screw singularity with a new-born topological charge determined by order of the edge state.The considered edge state comprises an equal superposition of oppositely charged vortex and antivortex modes.We theoretically and experimentally realize this edge-to-screw conversion process by introducing intrinsic vortex–antivortex interaction.We also present a geometrical representation for mapping this dynamical process,based on the higher-order orbital Poincarésphere.Within this framework,the edge-to-screw conversion is explained by a mapping of state evolution from the equator to the north or south pole of the Poincarésphere.Our demonstration provides a novel approach for manipulating singularity state by the intrinsic vortex–antivortex interactions.The presented phenomenon can be also generalized to other wave systems such as matter wave,water wave,and acoustic wave.
基金National Natural Science Foundation of China(11974146 and 62175091)Guangzhou Municipal Science and Technology Project(201904010094)+1 种基金Key-Area Research and Development Program of Guangdong Province(2020B090922006)the Pearl River talent project(2017GC010280).
文摘Rabi oscillations express a phenomenon of periodic conversion between two wave states in a coupled system.The finding of Rabi oscillation has led to important applications in many different disciplines.Despite great progress,it is still unknown whether the Rabi oscillating state can be excited in the framework of the higher-order vector vortex regime.Here,we demonstrate in theory that the higher-order vector vortex light beams can be Rabi oscillating during evolution in an optical coupling system.This new classical oscillating state of light is characterized by a topologically shaped wavefront and coupled with spatially varying polarization.The vector vortex state exhibits a harmonic oscillatory property in the resonant and nonresonant conditions but differs greatly in Rabi oscillating frequencies.During Rabi oscillation,the complex state maintains its topology and intensity profile,while its intrinsic polarization pattern varies adiabatically in a periodic manner.We present an interpretation of the Rabi oscillation of the higher-order wave states in terms of the coupled-mode theory.Furthermore,we reveal a symmetry-protected transition between two Rabi oscillating modes,driven by a slowly varying phase mismatch.This Rabi transition has not been reported in either quantum mechanics or any other physical setting.This work advances the research of Rabi oscillation into the higher-order regime,and it may lead to novel applications in classical and quantum optics.
基金This work was supported by the National Natural Science Foundation of China(62175091,11974146)the Pearl River talent project(2017GC010280)+3 种基金the Key-Area Research and Development Program of Guangdong Province(2020B090922006)the Guangzhou Science and technology project(202201020061)the China Postdoctoral Science Foundation(2021M701436)the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University(2021CXB005).
文摘Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics,triggering substantial investigations in different disciplines and various important applications both in the classical and quantum regimes.So far,two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves,while a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive.Here we report on the experimental and theoretical observation and control of spin–orbit-coupled Rabi oscillations in the higher-order regime of light.We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-crystal interaction.We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes,which are effectively controlled by a beam-dependent synthetic magnetic field.We introduce an electrically tunable platform,allowing fine control of transition between different oscillatory modes,resulting in an emission of orbital-angular-momentum beams with tunable topological structures.Our results constitute a general framework to explore spin–orbit couplings in the higher-order regime,offering routes to manipulating the spin and orbital angular momentum in three and four dimensions.The close analogy with the Pauli equation in quantum mechanics,nonlinear optics,etc.,implies that the demonstrated concept can be readily generalized to different disciplines.
基金The authors wish to thank the National Natural Science Foundation of China (No. 90510002 and No. 90210035) for financing the project.
文摘An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61935010,61975069,21905253,and 51973200)the China Postdoctoral Science Foundation(Nos.2018M640681 and 2019T120632)+5 种基金the Natural Science Foundation of Henan(No.202300410372)Key-Area Research and Development Program of Guangdong Province(No.2020B090922006)Guangdong Project of Science and Technology Grants(No.2018B030323017)Guangzhou science and technology project(Nos.201903010042 and 201904010294)Youth project of science and technology research program of Chongqing Education Commission of China(No.KJQN202001322)the Science and Technology Development Fund from Macao SAR(File Nos.0125/2018/A3 and 0071/2019/AMJ).
文摘The most widely used method of identification of microbial morphology and structure is microscopy,but it can be difficult to distinguish between pathogens with a similar appearance.Existing fluorescent staining methods require a combination of a variety of fluorescent materials to meet this demand.In this study,unique concentration-dependent fluorescent carbon dots(CDs)were synthesized for the identification and quantification of pathogens.The emission wavelength of the CDs could be tuned spanning the full visible region by virtue of aggregation-induced narrowing of bandgaps.This tunable emission wavelength of the specific concentration response to diverse microbes can be used to distinguish microorganisms with a similar appearance,even in a same genus.A hyperspectral microscopy system was demonstrated to distinguish Aspergillus flavus and A.fumigatus based on the results above.The identification accuracy of the two similar-looking pathogens can be close to 100%,and the relative proportions and spatial distributions can also be profiled from the mixture of the pathogens.This technique can provide a solution to the fast detection of microorganisms and is potentially applicable to a wide range of problems in areas such as healthcare,food preparation,biotechnology,and health emergency.
基金partially supported by the National Natural Science Foundation of China(11974146,61935010)the National Key Research and Development Program of China(2017YFB1104500)+2 种基金the Natural Science Foundation of Guangdong Province(2017B030306009,2018B010114002)the Pearl River Talent Project(2017GC010280)the Guangzhou Science and Technology Plan Project(201904010094)。
文摘Optical superoscillation refers to an intriguing phenomenon of a wave packet that can oscillate locally faster than its highest Fourier component,which potentially produces an extremely localized wave in the far field.It provides an alternative way to overcome the diffraction limit,hence improving the resolution of an optical microscopy system.However,the optical superoscillatory waves are inevitably accompanied by strong side lobes,which limits their fields of view and,hence,potential applications.Here,we report both experimentally and theoretically a new superoscillatory wave form,which not only produces significant feature size down to deep subwavelength,but also completely eliminates side lobes in a particular dimension.We demonstrate a new mechanism for achieving such a wave form based on a pair of moonlike sharp-edge apertures.The resultant superoscillatory wave exhibits Bessel-like forms,hence allowing long-distance propagation of subwavelength structures.The result facilitates the study of optical superoscillation and on a fundamental level eliminates the compromise between the superoscillatory feature size and the field of view.