Secure distribution of high-speed digital encryption/decryption keys over a classical fiber channel is strongly pursued for realizing perfect secrecy communication systems.However,it is still challenging to achieve a ...Secure distribution of high-speed digital encryption/decryption keys over a classical fiber channel is strongly pursued for realizing perfect secrecy communication systems.However,it is still challenging to achieve a secret key rate in the order of tens of gigabits per second to be comparable with the bit rate of commercial fiber-optic systems.In this paper,we propose and experimentally demonstrate a novel solution for high-speed secure key distribution based on temporal steganography and private chaotic phase scrambling in the classical physical layer.The encryption key is temporally concealed into the background noise in the time domain and randomly phase scrambled bit-by-bit by a private chaotic signal,which provides two layers of enhanced security to guarantee the privacy of key distribution while providing a high secret key rate.We experimentally achieved a record classical secret key rate of 10 Gb/s with a bit error rate lower than the hard-decision forward error correction(HD-FEC)over a 40 km standard single mode fiber.The proposed solution holds great promise for achieving high-speed key distribution in the classical fiber channel by combining steganographic transmission and chaotic scrambling.展开更多
High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and ...High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Huckel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.展开更多
基金National Key Research and Development Program of China(2023YFB2906000)National Natural Science Foundation of China(62004047,62375055,U2001601,U22A2087)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2023B1515020088)Guangdong Introducing Innovative and Entrepreneurial Teams of“The Pearl River Talent Recruitment Program”(2019ZT08X340)。
文摘Secure distribution of high-speed digital encryption/decryption keys over a classical fiber channel is strongly pursued for realizing perfect secrecy communication systems.However,it is still challenging to achieve a secret key rate in the order of tens of gigabits per second to be comparable with the bit rate of commercial fiber-optic systems.In this paper,we propose and experimentally demonstrate a novel solution for high-speed secure key distribution based on temporal steganography and private chaotic phase scrambling in the classical physical layer.The encryption key is temporally concealed into the background noise in the time domain and randomly phase scrambled bit-by-bit by a private chaotic signal,which provides two layers of enhanced security to guarantee the privacy of key distribution while providing a high secret key rate.We experimentally achieved a record classical secret key rate of 10 Gb/s with a bit error rate lower than the hard-decision forward error correction(HD-FEC)over a 40 km standard single mode fiber.The proposed solution holds great promise for achieving high-speed key distribution in the classical fiber channel by combining steganographic transmission and chaotic scrambling.
基金This project is supported by the Natural Science Foundation of China (NSFC), the Chinese National "973" project of the Ministry of Science and Technology (MOST), the Chinese Academy of Sciences and the Shanghai Supercomputer Center, H. T. acknowledges the "Centre de Calcul en Midi-Pyrenees" (CALMIP) for computational resources. H. T. also thanks Sebastien Gauthier for useful discussions.
文摘High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Huckel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.