Let Bn be the set of all n×n Boolean Matrices; R(A) denote the row space of A∈Bn, |R(A)| denote the cardinality of R(A), m, n, k, l, t, i, γi be positive integers, Si, λi be non negative integers. In t...Let Bn be the set of all n×n Boolean Matrices; R(A) denote the row space of A∈Bn, |R(A)| denote the cardinality of R(A), m, n, k, l, t, i, γi be positive integers, Si, λi be non negative integers. In this paper, we prove the following two results:(1)Let n≥13,n-3≥k〉Sl,Si+〉Si,i=1,2…,l-1.if k+l≤n,then for any m=2^k+2^S1-l+…+2^S1,there exists A∈Bn,such that |R(A)|=m.(2)Let n≥13,n-3≥k〉Sn-k-1〉Sn-k-2〉…S1〉λt〉λt-1〉…〉λ1,2≤t≤n-k.If exist γi(k+1≤γi≤n-1,i=1,2…,t-1)γi〈γi+1 and λt-λt-1≤k-Sn-γ1,λt-i-λt-i-1≤Sn-γi-Sn-γii+1,i=1,2…,t-2,then for any m=2^k+2^Sn-k-1+2^Sn-k-1+2^Sn-k-2+…+2^S1+2^λt+2^λt-1…+2^λ1,there exists A∈Bn,as such that |R(A)|=m.展开更多
基金Foundation item: Supported by the Guangdong Provincial Natural Science Foundation of China(06029035)
文摘Let Bn be the set of all n×n Boolean Matrices; R(A) denote the row space of A∈Bn, |R(A)| denote the cardinality of R(A), m, n, k, l, t, i, γi be positive integers, Si, λi be non negative integers. In this paper, we prove the following two results:(1)Let n≥13,n-3≥k〉Sl,Si+〉Si,i=1,2…,l-1.if k+l≤n,then for any m=2^k+2^S1-l+…+2^S1,there exists A∈Bn,such that |R(A)|=m.(2)Let n≥13,n-3≥k〉Sn-k-1〉Sn-k-2〉…S1〉λt〉λt-1〉…〉λ1,2≤t≤n-k.If exist γi(k+1≤γi≤n-1,i=1,2…,t-1)γi〈γi+1 and λt-λt-1≤k-Sn-γ1,λt-i-λt-i-1≤Sn-γi-Sn-γii+1,i=1,2…,t-2,then for any m=2^k+2^Sn-k-1+2^Sn-k-1+2^Sn-k-2+…+2^S1+2^λt+2^λt-1…+2^λ1,there exists A∈Bn,as such that |R(A)|=m.