The rhizosphere environment of tea(Camelllia sinensis Kuntze)intercropped with persimmon(Diospyros kaki)differs from monocultures of tea.A trial was conducted to determine the effects of intercropping with persimmon o...The rhizosphere environment of tea(Camelllia sinensis Kuntze)intercropped with persimmon(Diospyros kaki)differs from monocultures of tea.A trial was conducted to determine the effects of intercropping with persimmon on root exudates and soil nutrient condition of tea.Amino acid exuded in intercropping was three times higher than that in monoculture.Phenol,phenol/amino acid ration,dissolved sugar,and total organic acid were also lower in intercropping.The value of pH in soil was higher,and soil nutrient condition of rhizosphere,especially available nutrient,was not as well in intercropping as that in tea grown alone.While soil nutrient of non-rhizosphere was better than that in monoculture,tea quality and soil nutrient condition were better in intercropping ecosystem.展开更多
The plant communities and their microclimates were surveyed and observed,and the soil fertilities were determined in six plots of evergreen broadleaved forests of different sizes and similar slope aspects on Jinyun Mo...The plant communities and their microclimates were surveyed and observed,and the soil fertilities were determined in six plots of evergreen broadleaved forests of different sizes and similar slope aspects on Jinyun Mountains of Chongqing in China from April to October,2003.The relationships of biotic and abiotic factors were analyzed using the Simpson,Shannon-Wiener,and Hill diversity indices,and stepwise multilinear regression analyses techniques.The results showed that compared with continuous evergreen broadleaved forests,five fragmentations had a lower species diversity index,and different life forms showed differences in diversity index.With the decrease in patch areas,the daily differences in air temperature(ΔTa),ground surface temperature(ΔTs),daily differences in relative humidity(ΔRH),maximum wind velocity(Vmax),differences in photosynthetic available radiation(ΔPAR)(at noon)of both edges and interiors,all tended to increase.Maximum wind velocity(Vmax)and photo effective radiation in forest edges were higher than those in interior forest,which presented a stronger temperature-gained edge effect.In all the fragmentations of evergreen broadleaved forests,the depth of the edge effect was the nearest from interior forest in the biggest patch(about 15 meters away from interior forest),while the depth of the edge effect was the farthest from interior forest in the smallest patch(about 25 meters away from interior forest).With regard to the water conservation function,soil water content improved along with increasing species diversity.Some of the nutritional function substances of soil increased with increasing species diversity.The elements of microclimate,such as Ta,ΔTa,ΔTs,ΔRH,Vmax,and PAR,changed along with the extent of fragmented forest.展开更多
基金This study was supported by the Ninth Five-year Key Science and Technology Foundation of China(No.96-004-03-07)。
文摘The rhizosphere environment of tea(Camelllia sinensis Kuntze)intercropped with persimmon(Diospyros kaki)differs from monocultures of tea.A trial was conducted to determine the effects of intercropping with persimmon on root exudates and soil nutrient condition of tea.Amino acid exuded in intercropping was three times higher than that in monoculture.Phenol,phenol/amino acid ration,dissolved sugar,and total organic acid were also lower in intercropping.The value of pH in soil was higher,and soil nutrient condition of rhizosphere,especially available nutrient,was not as well in intercropping as that in tea grown alone.While soil nutrient of non-rhizosphere was better than that in monoculture,tea quality and soil nutrient condition were better in intercropping ecosystem.
基金This study was supported by the National Natural Science Foundation of China(Grant No.30370279).
文摘The plant communities and their microclimates were surveyed and observed,and the soil fertilities were determined in six plots of evergreen broadleaved forests of different sizes and similar slope aspects on Jinyun Mountains of Chongqing in China from April to October,2003.The relationships of biotic and abiotic factors were analyzed using the Simpson,Shannon-Wiener,and Hill diversity indices,and stepwise multilinear regression analyses techniques.The results showed that compared with continuous evergreen broadleaved forests,five fragmentations had a lower species diversity index,and different life forms showed differences in diversity index.With the decrease in patch areas,the daily differences in air temperature(ΔTa),ground surface temperature(ΔTs),daily differences in relative humidity(ΔRH),maximum wind velocity(Vmax),differences in photosynthetic available radiation(ΔPAR)(at noon)of both edges and interiors,all tended to increase.Maximum wind velocity(Vmax)and photo effective radiation in forest edges were higher than those in interior forest,which presented a stronger temperature-gained edge effect.In all the fragmentations of evergreen broadleaved forests,the depth of the edge effect was the nearest from interior forest in the biggest patch(about 15 meters away from interior forest),while the depth of the edge effect was the farthest from interior forest in the smallest patch(about 25 meters away from interior forest).With regard to the water conservation function,soil water content improved along with increasing species diversity.Some of the nutritional function substances of soil increased with increasing species diversity.The elements of microclimate,such as Ta,ΔTa,ΔTs,ΔRH,Vmax,and PAR,changed along with the extent of fragmented forest.