期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
光镊捕获和操控尺度极限的进展
1
作者 霍春安 邱圣杰 +6 位作者 梁青满 耿碧君 雷志超 王干 邹玉玲 田中群 杨扬 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第1期3-19,共17页
光镊技术能够实现对介观乃至微观颗粒的稳定捕获和灵活操控,是对微纳物体和单个分子施加力并观测其响应的理想操控手段。受限于光的衍射极限,传统光镊难以实现对100 nm以下物体的捕获和操控。研究者们通过开发特殊的材料和结构,将它们... 光镊技术能够实现对介观乃至微观颗粒的稳定捕获和灵活操控,是对微纳物体和单个分子施加力并观测其响应的理想操控手段。受限于光的衍射极限,传统光镊难以实现对100 nm以下物体的捕获和操控。研究者们通过开发特殊的材料和结构,将它们与传统光镊技术结合,不断突破其在小尺度物体的捕获和操控极限。本文主要综述了近年来光镊的不同技术路线在突破捕获操控极限的研究进展,以及其在物理化学领域中的应用,并对其发展和应用进行展望。 展开更多
关键词 光镊 单分子 捕获尺寸 微尺度操控 等离激元 固液界面
下载PDF
碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究
2
作者 谷宇 胡元飞 +7 位作者 王卫伟 尤恩铭 唐帅 苏建加 易骏 颜佳伟 田中群 毛秉伟 《电化学(中英文)》 CAS 北大核心 2023年第12期14-23,共10页
锂电池体系中负极表面固态电解质界面相(SEI)对锂电池性能起到至关重要的作用。然而,SEI结构和化学组成复杂,其形成机理至今仍未完全阐明,阻碍了锂电池的发展和应用。本文从方法学角度出发,采用表面增强拉曼光谱(SERS)“借力”策略,通... 锂电池体系中负极表面固态电解质界面相(SEI)对锂电池性能起到至关重要的作用。然而,SEI结构和化学组成复杂,其形成机理至今仍未完全阐明,阻碍了锂电池的发展和应用。本文从方法学角度出发,采用表面增强拉曼光谱(SERS)“借力”策略,通过优化银纳米粒子的结构并借助其外来表面局域等离激元共振作用,开展以EC-DMC为溶剂的碳酸酯类电解液体系中SEI成膜过程的原位研究。为了确保可靠的原位SERS测试,我们设计了一种三电极体系气密拉曼电池。我们利用原位SERS方法,在纳米银电极上获得了SEI成膜过程的组成和结构信息。研究表明,SEI随电位变化呈现出双层结构,其中内层由薄且致密的无机组分构成,外层由疏松的有机组分构成。同时,研究发现LEMC是EC还原的主要成分,而不是LEDC,且金属锂参与的化学反应在形成稳定SEI中的起到关键作用。此外,锂发生沉积后,由于锂与银的合金效应导致其介电常数发生变化,从而削无法进一步增强SEI的拉曼信号。本文为深入理解负极表面SEI的形成及演变过程提供依据,并为今后开展锂电池体系相关界面过程的原位研究提供借鉴。 展开更多
关键词 固态电解质界面相 原位SERS 负极界面 锂电池
下载PDF
Direct Z-scheme WO_(3-x) nanowire-bridged TiO_(2) nanorod arrays for highly efficient photoelectrochemical overall water splitting 被引量:2
3
作者 Sheng Lin He Ren +7 位作者 Zhi Wu Lan Sun Xia-Guang Zhang Yu-Mei Lin Kelvin H.L.Zhang Chang-Jian Lin zhong-qun tian Jian-Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期721-729,I0015,共10页
All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a di... All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a direct Z-scheme photoelectrocatalytic electrode based on a WO_(3-x)nanowire-bridged TiO_(2)nanorod array heterojunction is constructed for overall water splitting,producing H_(2).The as-prepared WO_(3-x)/TiO_(2)nanorod array heterojunction shows photoelectrochemical(PEC)overall water splitting activity evolving both H_(2) and O_(2)under UV-vis light irradiation.An optimum PEC activity was achieved over a 1.67-WO_(3-x)/TiO_(2)photoelectrode yielding maximum H_(2) and O_(2)evolution rates roughly 11 times higher than that of pure TiO_(2)nanorods without any sacrificial agent or redox mediator.The role of oxygen vacancy in WO_(3-x)in affecting the H_(2) production rate was also comprehensively studied.The superior PEC activity of the WO_(3-x)/TiO_(2)electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO_(3-x)nanowires and TiO_(2)nanorods,the presence of oxygen vacancies in WO_(3-x),and a bias potential applied on the photoelectrode,resulting in effective spatial charge separation.This study provides a novel strategy for developing highly efficient PECs for overall water splitting. 展开更多
关键词 TiO_(2) nanorod arrays WO_(3-x) nanowire Heterostructure PHOTOELECTROCHEMICAL Hydrogen production
下载PDF
In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2): Cathode materials for sodium batteries 被引量:2
4
作者 Xiao-Bin Zhong Chao He +2 位作者 Fan Gao zhong-qun tian Jian-Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期323-328,I0011,共7页
Layered P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 is a promising cathode material. It exhibits a high capacity and suitable operating voltage and undergoes a phase transition from P2 to O2 during charge/discharge.Researchers ha... Layered P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 is a promising cathode material. It exhibits a high capacity and suitable operating voltage and undergoes a phase transition from P2 to O2 during charge/discharge.Researchers have used Ti substitution to improve the cathode, yet the chemical principles that underpin elemental substitution and functional improvement remain unclear. To clarify these principles, we used in situ Raman spectroscopy to monitor chemical changes in P2–Na2/3 Ni1/3 Mn1/3 Ti1/3 O2 and P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 during charge/discharge. Based on the change in the A_(1g) and E_g peaks during charge/discharge, we concluded that Ti substitution compressed the transition metal layer and expanded the planar oxygen layer in the unit cell. Titanium stabilized the P2 phase structure, which improved the cycling stability of P2–NaNMT. Our results provide clear theoretical support for future research on modifying electrodes by elemental substitution. 展开更多
关键词 In situ Raman spectroscopy P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2) Titanium substitution
下载PDF
Efficient plasmon-enhanced perovskite solar cells by molecularly isolated gold nanorods
5
作者 Yong Hui En-Ming You +11 位作者 Qing-Peng Luo Tan Wang Zi-Ang Nan Yu Gu Wen-Han Zhang Zhuan-Yun Cai Liang Chen Jian-Zhang Zhou Jia-Wei Yan Zhao-Xiong Xie Bing-Wei Mao zhong-qun tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期60-67,I0003,共9页
Perovskite solar cells(PSCs)are becoming a promising candidate for next-generation photovoltaic cells due to their attractive power conversion efficiency(PCE).Plasmonic enhancement is regarded as an optical tuning app... Perovskite solar cells(PSCs)are becoming a promising candidate for next-generation photovoltaic cells due to their attractive power conversion efficiency(PCE).Plasmonic enhancement is regarded as an optical tuning approach for further improving the PCE of single-junction PSCs toward Shockley-Queisser limit.Herein,we introduce molecularly isolated gold nanorods(Au NRs),bearing relatively stronger scattering ability and localized surface plasmonic resonance(LSPR)effect,in the rear side of perovskites in PSCs,for promoting light harvesting and for electrical enhancement.Owing to the larger refractive index and better matched energy level alignment,the 4-mercaptobenzoic acid molecules coated on Au NRs prove to play important dual roles:isolating the metallic Au NRs from contacting with perovskite,and facilitating more efficient charge separation and transport across the interface under the synergetic LSPR effect of Au NRs.Our work highlights the capability of the plasmonic approach by nanorods and by molecular isolation,extending nanoparticle-based plasmonic approaches,toward highly efficient plasmon-enhanced PSCs. 展开更多
关键词 Perovskite solar cells Plasmon-enhanced Gold nanorods Molecular isolation Scattering
下载PDF
Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared
6
作者 En-Ming You Yiqin Chen +6 位作者 Jun Yi Zhao-Dong Meng Qian Chen Song-Yuan Ding Huigao Duan Martin Moskovits zhong-qun tian 《Opto-Electronic Advances》 SCIE EI 2021年第12期1-14,共14页
Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared det... Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared detection.However,most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed,severely limiting other useful applications that broadband resonances make possible.In this study,we report a multiscale nanobridged rhombic antenna(NBRA)that supports two dominant reson-ances in the MIR,including a charge-transfer plasmon(CTP)band and a bridged dipolar plasmon(BDP)band which looks like a quadruple resonance.These assignments are evidenced by scattering-type scanning near-field optical micro-scopy(s-SNOM)imaging and electromagnetic simulations.The high-order mode only occurs with nanometer-sized bridge(nanobridge)linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis.Moreover,the main hotspots associated with the two resonant bands are spatially superimposed,en-abling boosting up the local field for both bands by multiscale coupling.With large field enhancements,multiband detec-tion with high sensitivity to a monolayer of molecules is achieved when using SEIRA.Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs,IR detectors,and beam-shaping of quantum cascade lasers in the future. 展开更多
关键词 optical antenna charge transfer plasmon multiband resonances scanning near-field optical microscopy surface-enhanced infrared spectroscopy
下载PDF
The fabrication,characterization and functionalization in molecular electronics
7
作者 Yi Zhao Wenqing Liu +5 位作者 Jiaoyang Zhao Yasi Wang Jueting Zheng Junyang Liu Wenjing Hong zhong-qun tian 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第2期49-91,共43页
Developments in advanced manufacturing have promoted the miniaturization of semiconductor electronic devices to a near-atomic scale,which continuously follows the‘top-down’construction method.However,huge challenges... Developments in advanced manufacturing have promoted the miniaturization of semiconductor electronic devices to a near-atomic scale,which continuously follows the‘top-down’construction method.However,huge challenges have been encountered with the exponentially increased cost and inevitably prominent quantum effects.Molecular electronics is a highly interdisciplinary subject that studies the quantum behavior of electrons tunneling in molecules.It aims to assemble electronic devices in a‘bottom-up’manner on this scale through a single molecule,thereby shedding light on the future design of logic circuits with new operating principles.The core technologies in this field are based on the rapid development of precise fabrication at a molecular scale,regulation at a quantum scale,and related applications of the basic electronic component of the‘electrode-molecule-electrode junction’.Therefore,the quantum charge transport properties of the molecule can be controlled to pave the way for the bottom-up construction of single-molecule devices.The review firstly focuses on the collection and classification of the construction methods for molecular junctions.Thereafter,various characterization and regulation methods for molecular junctions are discussed,followed by the properties based on tunneling theory at the quantum scale of the corresponding molecular electronic devices.Finally,a summary and perspective are given to discuss further challenges and opportunities for the future design of electronic devices. 展开更多
关键词 molecular electronics molecular junction molecular electronic device fabrication and functionalization
下载PDF
Opportunities and challenges of strain engineering for advanced electrocatalyst design 被引量:2
8
作者 Qing-Man Liang Xinchang Wang +4 位作者 Xin-Wang Wan Long-Xing Lin Bi-Jun Geng zhong-qun tian Yang Yang 《Nano Research》 SCIE EI CSCD 2023年第7期8655-8669,共15页
Electrocatalysis is becoming more and more important in energy conversion and storage due to rising energy demands,increasing carbon dioxide emissions,and impending climate change.The design and synthesis of high-perf... Electrocatalysis is becoming more and more important in energy conversion and storage due to rising energy demands,increasing carbon dioxide emissions,and impending climate change.The design and synthesis of high-performance electrocatalysts are the spotlights of electrocatalysis.Among many design methodologies reported,strain engineering has gained growing attention because it can change the atomic arrangement and lattice structure of electrocatalysts.However,strain engineering remains to be problematic in regulating the properties of electrocatalysts.This review discusses the strain effect tactics to regulate metal and non-metal electrocatalysts,including three sections focusing on strain categorization,strain regulation mechanism,and applications in electrocatalysis,respectively.Finally,the current challenges and an outlook of strain engineering are discussed. 展开更多
关键词 ELECTROCATALYSIS electrocatalyst design strain engineering categorization and mechanism applications in electrocatalysis
原文传递
Optical Trapping of a Single Molecule of Length Sub-1 nm in Solution 被引量:1
9
作者 Biao-Feng Zeng Ran Deng +11 位作者 Yu-Ling Zou Chun-An Huo Jing-Yu Wang Wei-Ming Yang Qing-Man Liang Sheng-Jie Qiu Anni Feng Jia Shi Wenjing Hong Zhilin Yang zhong-qun tian Yang Yang 《CCS Chemistry》 CSCD 2023年第4期830-840,共11页
Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have b... Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have been considered promising,the experimental strategies remain a challenge due to the Brownian motions and weak optical gradient forces with significantly reduced molecular polarizability.Herein,we address direct trapping and in situ sensing of single molecules with unprecedented size,down to∼5Åin solution,by employing an adjustable plasmonic optical nanogap and single-molecule conductance measurement.The theoretical simulations demonstrate that local fields with a high enhancement factor,over 103,were generated at such small nanogaps,resulting in optical forces as large as several piconewtons to suppress the Brownian motion and trap a molecule of length sub-1 nm.This work demonstrates a strategy for directly manipulating the small molecule units,promising a vast multitude of applications in chemical,biological,and materials sciences at the single-molecule level. 展开更多
关键词 plasmon-enhanced trapping molecular junction mechanically controllable break junction finite-element simulation method single-molecule conductance measurement
原文传递
Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy
10
作者 Yu-Jiao Xia-Hou Xu-Cheng Li +6 位作者 En-Ming You Hong-Peng He Jun Yi Jun-Rong Zheng Hai-Long Wang Hai-Xin Lin zhong-qun tian 《Nano Research》 SCIE EI CSCD 2023年第8期11326-11333,共8页
Nano-infrared(nanoIR)probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission,and their testing performance is critically dependent on their optical properties and structura... Nano-infrared(nanoIR)probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission,and their testing performance is critically dependent on their optical properties and structural stability.Graphene-coated dielectric probes are highly attractive for enhancing light–matter interactions and integrating IR photonics,providing a broadband optical response and strong electromagnetic field.However,achieving continuous single-layer graphene growth on non-planar and non-single crystalline dielectrics is a significant challenge due to the low surface energy of the dielectric and the large difference in size between the probe tip,cantilever,and substrate.Herein,we present a novel method for the growth of high-quality and continuous graphene with good conductivity on non-planar and amorphous dielectric probe surfaces using manganese oxide powder-assisted short time heating chemical vapor deposition.The resulting graphene-coated dielectric probes exhibit an average IR reflectance of only 5%in the mid-IR band,significantly outperforming probes without continuous graphene coating.Such probes can not only effectively transduce the local photothermal sample expansion caused by the absorption of IR laser pulses,but also effectively scatter near-field light,which is 25 times stronger than the commercial metal-coated probes,and have advantages in the application of nanoIR sensing based on atomic force microscope-based infrared(AFM-IR)spectroscopy and infrared scattering scanning near field optical microscopy(IR s-SNOM)principles.Furthermore,our graphene growth method provides a solution for growing high-quality graphene on the surfaces of non-planar dielectric materials required for integrated circuits and other fields. 展开更多
关键词 graphene-coated nano-infrared(nanoIR)spectroscopy atomic force microscope-based infrared(AFM-IR) INFRARED
原文传递
Pd-based nanocatalysts for oxygen reduction reaction:Preparation,performance,and in-situ characterization
11
作者 Guan-Nan Xing Di-Ye Wei +2 位作者 Hua Zhang zhong-qun tian Jian-Feng Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第11期55-68,共14页
Electrochemical energy devices such as fuel cells have received extensive concern in recent decades.However,the commercial applications of fuel cells have been restricted by the slow kinetics of oxygen reduction react... Electrochemical energy devices such as fuel cells have received extensive concern in recent decades.However,the commercial applications of fuel cells have been restricted by the slow kinetics of oxygen reduction reaction(ORR).Pd-based fuel cell catalysts are strong candidates for enhanced ORR activities,especially under alkaline conditions.Therefore,extensive exploration has been made to improve the performance of Pd-based nano-catalysts for oxygen reduction reaction.This paper reviews the research progress of preparation,electrocatalytic performance,and in-situ characterization of various Pd-based oxygen reduction catalysts,from zero-dimensional nanoparticles,to one-dimensional nanowires,to two-dimensional nanosheets,and to Pd single-atom catalysts.It may provide some help for improving the activity of Pd-based catalysts and understanding the reaction mecha-nisms and structure-activity relationships. 展开更多
关键词 Pd-based nanocatalyst Oxygen reduction reaction Electrocatalysis In-situ characterization
原文传递
Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design 被引量:6
12
作者 Hai-Long Wang En-Ming You +2 位作者 Rajapandiyan Panneerselvam Song-Yuan Ding zhong-qun tian 《Light(Science & Applications)》 SCIE EI CAS CSCD 2021年第9期1588-1606,共19页
Raman and infrared(IR)spectroscopy are powerful analytical techniques,but have intrinsically low detection sensitivity.There have been three major steps(i)to advance the optical system of the light excitation,collecti... Raman and infrared(IR)spectroscopy are powerful analytical techniques,but have intrinsically low detection sensitivity.There have been three major steps(i)to advance the optical system of the light excitation,collection,and detection since 1920s,(ii)to utilize nanostructure-based surface-enhanced Raman scattering(SERS)and surface-enhanced infrared absorption(SEIRA)since 1990s,and(iii)to rationally couple(i)and(ii)for maximizing the total detection sensitivity since 2010s.After surveying the history of SERS and SEIRA,we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA.We describe various interactions of light with nano/microstructures,localized surface plasmon,surface plasmon polariton,and lightning-rod effect.Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration.As the nano/microstructures have specific optical near-field and far-field behaviors,we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity.We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region.We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy.Finally,prospects and further developments of this field are given with emphasis on emerging techniques and methodologies. 展开更多
关键词 surface EXCITATION utilize
原文传递
Surface plasmon-enhanced photochemical reactions on noble metal nanostructures 被引量:3
13
作者 De-Yin Wu Meng Zhang +3 位作者 Liu-Bin Zhao Yi-Fan Huang Bin Ren zhong-qun tian 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第4期574-585,共12页
Nanoscale noble metals can exhibit excellent photochemical and photophysical properties, due to surface plasmon resonance(SPR) from specifically collective electronic excitations on these metal surfaces. The SPR effec... Nanoscale noble metals can exhibit excellent photochemical and photophysical properties, due to surface plasmon resonance(SPR) from specifically collective electronic excitations on these metal surfaces. The SPR effect triggers many new surface processes, including radiation and radiationless relaxations. As for the radiation process, the SPR effect causes the significant focus of light and enormous enhancement of the local surface optical electric field, as observed in surface-enhanced Raman spectroscopy(SERS) with very high detection sensitivity(to the single-molecule level). SERS is used to identify surface species and characterize molecular structures and chemical reactions. For the radiationless process, the SPR effect can generate hot carriers, such as hot electrons and hot holes, which can induce and enhance surface chemical reactions. Here, we review our recent work and related literature on surface catalytic-coupling reactions of aromatic amines and aromatic nitro compounds on nanostructured noble metal surfaces. Such reactions are a type of novel surface plasmon-enhanced chemical reaction. They could be simultaneously characterized by SERS when the SERS signals are assigned. By combining the density functional theory(DFT) calculations and SERS experimental spectra, our results indicate the possible pathways of the surface plasmonenhanced photochemical reactions on nanostructures of noble metals. To construct a stable and sustainable system in the conversion process of the light energy to the chemical energy on nanoscale metal surfaces, it is necessary to simultaneously consider the hot electrons and the hot holes as a whole chemical reaction system. 展开更多
关键词 表面等离子体共振 光化学反应 等离子体增强 纳米结构 贵金属 表面增强拉曼光谱 SPR效应 芳香族硝基化合物
原文传递
Electropolishing of titanium alloy under hydrodynamic mode 被引量:3
14
作者 Pei Huang Junhui Lai +6 位作者 Lianhuan Han Fang-Zu Yang Li-Min Jiang Jian-Jia Su Zhao-Wu tian zhong-qun tian Dongping Zhan 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第11期1525-1528,共4页
Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. ... Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. With a home-made electrochemical machining workstation, cyclic voltammetry is performed at a wide potential range of [0 V, 20 V] to record the details of passivation and depassivation processes under a hydrodynamic mode. The results show that the thickness of viscous layer formed on the alloy surface plays a crucial effect on the electropolishing quality. The technical parameters, including the mechanical motion rate, polishing time and electrode gap, are optimized to achieve a surface roughness less than 1.9 nm, which shows a prospective application in the electrochemical machining of Ti and it alloys. 展开更多
关键词 电气化学的用机器制造 电刷光 钛合金 水动力学粘滞层
原文传递
Electrochemical hydrogen-storage capacity of graphene can achieve a carbon-hydrogen atomic ratio of 1:1 被引量:2
15
作者 Quanfeng He Lanping Zeng +5 位作者 Lianhuan Han Juan Peng Matthew M.Sartin Yuan-Zhi Tan Dongping Zhan zhong-qun tian 《Science China Chemistry》 SCIE EI CSCD 2022年第2期318-321,共4页
As a promising hydrogen-storage material,graphene is expected to have a theoretical capacity of 7.7 wt%,which means a carbon-hydrogen atomic ratio of 1:1.However,it has not been demonstrated yet by experiment,and the ... As a promising hydrogen-storage material,graphene is expected to have a theoretical capacity of 7.7 wt%,which means a carbon-hydrogen atomic ratio of 1:1.However,it has not been demonstrated yet by experiment,and the aim of the U.S.Department of Energy is to achieve 5.5 wt%in 2025.We designed a spatially-confined electrochemical system and found that the storage capacity of hydrogen adatoms on single layer graphene(SLG)is as high as 7.3 wt%,which indicates a carbon-hydrogen atomic ratio of 1:1 by considering the sp^(3) defects of SLG.First,SLG was deposited on a large-area polycrystalline platinum(Pt)foil by chemical vapor deposition(CVD);then,a micropipette with reference electrode,counter electrode and electrolyte solution inside was impacted on the SLG/Pt foil(the working electrode)to construct the spatially-confined electrochemical system.The SLG-uncovered Pt atoms act as the catalytic sites to convert protons(H^(+))to hydrogen adatoms(H_(ad)),which then spill over and are chemically adsorbed on SLG through surface diffusion during the cathodic scan.Because the electrode processes are reversible,the H_(ad) amount can be measured by the anodic stripping charge.This is the first experimental evidence for the theoretically expected hydrogen-storage capacity on graphene at ambient environment,especially by using H+rather than hydrogen gas(H_(2))as the hydrogen source,which is of significance for the practical utilization of hydrogen energy. 展开更多
关键词 GRAPHENE hydrogen storage surface electrochemistry adsorption DESORPTION SPILLOVER surface diffusion
原文传递
Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution 被引量:2
16
作者 Fang-Fang Wang Wei Wang +5 位作者 Xi He Lianhuan Han Jian-Zhang Zhou zhong-qun tian Zhao-Wu tian Dongping Zhan 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第5期649-655,共7页
Scanning probe is the key issue for the electrochemical scanning probe techniques(EC-SPM) such as EC-scanning tunnel microscopy(STM), EC-atomic force microscopy(AFM) and scanning electrochemical microscopy(SECM), espe... Scanning probe is the key issue for the electrochemical scanning probe techniques(EC-SPM) such as EC-scanning tunnel microscopy(STM), EC-atomic force microscopy(AFM) and scanning electrochemical microscopy(SECM), especially the insulative encapsulation of the nanoelectrode probe for both positioning and electrochemical feedbacks. To solve this problem,we develop a novel fabrication method of the gold nanoelectrodes: firstly, a micropipette with nanomter-sized orifice was prepared as the template by a laser puller; secondly, the inside wall of micropipette apex was blocked by compact and conic Au nano-piece through electroless plating; thirdly, the Au nano-piece was grown by bipolar electroplating and connected with a silver wire as a current collector. The fabricated Au nanoelectrode has very good voltammetric responses for the electrodic processes of both mass transfer and adsorption. The advantage lies in that it is well encapsulated by a thin glass sealing layer with a RG value lowered to 1.3, which makes it qualified in the SECM-STM coupling mode. On one hand, it can serve as STM tip for positioning which ensures the high spatial resolution; on the other hand, it is a high-quality nanoelectrode to explore the local chemical activity of the substrate. The nanofabrication method may promote the SPM techniques to obtain simultaneously the physical and chemical images with nanoscale spatial resolution, which opens a new approach to tip chemistry in electrochemical nanocatalysis and tip-enhanced spectroscopy. 展开更多
关键词 scanning probe SECM BIPOLAR NANOELECTRODE electrochemical imaging
原文传递
Revealing unconventional host-guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy 被引量:2
17
作者 Gan-Yu Chen Yi-Bin Sun +9 位作者 Pei-Chen Shi Tao Liu Zhi-Hao Li Si-Heng Luo Xin-Chang Wang Xiao-Yu Cao Bin Ren Guo-Kun Liu Liu-Lin Yang zhong-qun tian 《Light(Science & Applications)》 SCIE EI CAS CSCD 2021年第5期898-905,共8页
Interfacial host–guest complexation offers a versatile way to functionalize nanomaterials.However,the complicated interfacial environment and trace amounts of components present at the interface make the study of int... Interfacial host–guest complexation offers a versatile way to functionalize nanomaterials.However,the complicated interfacial environment and trace amounts of components present at the interface make the study of interfacial complexation very difficult.Herein,taking the advantages of near-single-molecule level sensitivity and molecular fingerprint of surface-enhanced Raman spectroscopy(SERS),we reveal that a cooperative effect between cucurbit[7]uril(CB[7])and methyl viologen(MV^(2+)2^(I−))in aggregating Au NPs originates from the cooperative adsorption of halide counter anions I^(−),MV^(2+),and CB[7]on Au NPs surface.Moreover,similar SERS peak shifts in the control experiments using CB[n]s but with smaller cavity sizes suggested the occurrence of the same guest complexations among CB[5],CB[6],and CB[7]with MV2+.Hence,an unconventional exclusive complexation model is proposed between CB[7]and MV^(2+)on the surface of Au NPs,distinct from the well-known 1:1 inclusion complexation model in aqueous solutions.In summary,new insights into the fundamental understanding of host–guest interactions at nanostructured interfaces were obtained by SERS,which might be useful for applications related to host–guest chemistry in engineered nanomaterials. 展开更多
关键词 materials. surface. COMPLEXATION
原文传递
Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy 被引量:2
18
作者 Ting-Xiao Qin En-Ming You +5 位作者 Mao-Xin Zhang Peng Zheng Xiao-Feng Huang Song-Yuan Ding Bing-Wei Mao zhong-qun tian 《Light(Science & Applications)》 SCIE EI CAS CSCD 2021年第5期890-897,共8页
Organic–inorganic halide perovskites are emerging materials for photovoltaic applications with certified power conversion efficiencies(PCEs)over 25%.Generally,the microstructures of the perovskite materials are criti... Organic–inorganic halide perovskites are emerging materials for photovoltaic applications with certified power conversion efficiencies(PCEs)over 25%.Generally,the microstructures of the perovskite materials are critical to the performances of PCEs.However,the role of the nanometer-sized grain boundaries(GBs)that universally existing in polycrystalline perovskite films could be benign or detrimental to solar cell performance,still remains controversial.Thus,nanometer-resolved quantification of charge carrier distribution to elucidate the role of GBs is highly desirable.Here,we employ correlative infrared-spectroscopic nanoimaging by the scattering-type scanning near-field optical microscopy with 20 nm spatial resolution and Kelvin probe force microscopy to quantify the density of electrons accumulated at the GBs in perovskite polycrystalline thin films.It is found that the electron accumulations are enhanced at the GBs and the electron density is increased from 6×10^(19) cm^(−3 )in the dark to 8×10^(19) cm^(−3 ) under 10 min illumination with 532 nm light.Our results reveal that the electron accumulations are enhanced at the GBs especially under light illumination,featuring downward band bending toward the GBs,which would assist in electron-hole separation and thus be benign to the solar cell performance. 展开更多
关键词 ILLUMINATION POLYCRYSTALLINE GRAIN
原文传递
Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution 被引量:1
19
作者 BAO-YING WEN JING-YU WANG +10 位作者 TAI-LONG SHEN ZHEN-WEI ZHU PENG-CHENG GUAN JIA-SHENG LIN WEI PENG WEI-WEI CAI HUAIZHOU JIN QING-CHI XU ZHI-LIN YANG zhong-qun tian JIAN-FENG LI 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第9期2107-2114,共8页
The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter intera... The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter interactions at~1 nm spatial resolution by coupling A excitons of MoS2 and gap-mode plasmonic nanocavities.Moreover,we observed the significant photoluminescence(PL)enhancement factor reaching up to 2800 times,which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities.Meanwhile,the theoretical calculations are well reproduced and support the experimental results. 展开更多
关键词 RESOLUTION LIGHT PLASMON
原文传递
Tribocatalysis: challenges and perspectives 被引量:1
20
作者 Feng-Ru Fan Shunji Xie +1 位作者 Guan-Wu Wang zhong-qun tian 《Science China Chemistry》 SCIE EI CSCD 2021年第10期1609-1613,共5页
With an increasing global energy demands and environmental pollution, the development of alternative clean energy technologies has aroused widespread research interest.Harvesting and converting natural energy from the... With an increasing global energy demands and environmental pollution, the development of alternative clean energy technologies has aroused widespread research interest.Harvesting and converting natural energy from the environment, such as solar energy, mechanical energy, thermal energy, chemical and biological energy, is one of the main sources of clean energy. 展开更多
关键词 CATALYSIS POLLUTION ENERGY
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部