Objective: To explore the effect of salinomycin on the metastasis and invasion of bladder cancer cell line T24 by regulating the related protein expression in the process of epithelialmesenchymal transition(EMT), and ...Objective: To explore the effect of salinomycin on the metastasis and invasion of bladder cancer cell line T24 by regulating the related protein expression in the process of epithelialmesenchymal transition(EMT), and to provide experimental basis for the treatment of urological tumors. Methods: The bladder cancer cell line T24 was cultured in vitro. The rat bladder tumor model was established in vivo. The rats were randomized into two groups, among which the rats in the experiment group were given intraperitoneal injection of salinomycin, while the rats in the control group were given intraperitoneal injection of normal saline. The change of tumor cells in the two groups was observed. Transwell was used to detect the cell migration and invasion abilities, Real-time PCR was used to detect the expression of m RNA, while Western-blot was utilized for the determination of the expressions of E-cadherin and vimentin proteins. Results: The metastasis and invasion abilities of serum bladder cancer cell line T24 after salinomycin treatment in the experiment group were significantly reduced when compared with those in the control group, and the tumor metastasis lesions were decreased from an average of 1.59 to 0.6(P<0.05). T24 cell proliferation in the experiment group was gradually decreasing. T24 cell proliferation at 48 h was significantly lower than that at 12 h and 24 h(P<0.05). T24 cell proliferation at 24 h was significantly lower than that at 12 h(P<0.05). T24 cell proliferation at each timing point in the experiment group was significantly lower than that in the control group(P<0.05). The serum m RNA level and E-cadherin expression in the tumor tissues in the experiment group were significantly higher than those in the control group, while vimentin expression level was significantly lower than that in the control group(P<0.05). Conclusions: Salinomycin can suppress the metastasis and invasion of bladder cancer cells, of which the mechanism is probably associated with the inhibition of EMT of tumor cells.展开更多
We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with...We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with an additional mechanical resonator and the additional mechanical resonator can be driven by a weak external coherently mechanical driving field.We show that both the intensity and the phase of the external mechanical driving field can control the propagation of the probe field, including changing the transmission spectrum from double windows to a single-window.Our study also provides an effective way to generate intensity-controllable, narrow-bandwidth transmission spectra, with the probe field modulated from excessive opacity to remarkable amplification.展开更多
We present a scheme of reversible waveform conversion between microwave and optical fields in the hybrid optoelectromechanical system. As an intermediate interface, nanomechanical resonator optomechanically couples bo...We present a scheme of reversible waveform conversion between microwave and optical fields in the hybrid optoelectromechanical system. As an intermediate interface, nanomechanical resonator optomechanically couples both optomechanical cavities in the optical and microwave frequency domains. We find the double-optomechanically induced transparency and achieve coherent signal waveform bi-directional transfer between microwave and optical fields based on quantum interference. In addition, we give an analytical expression of one-to-one correspondence between the microwave field and the optical output field, which intuitively shows the reversible waveform conversion relationship. In particular,by numerical simulations and approximate expression, we demonstrate the conversion effects of the three waveforms and discuss the bi-directional conversion efficiency and the bandwidth. such a hybrid opto-and electro-mechanical device has significant potential functions for electro-optic modulation and waveform conversion of quantum microwave-optical field in optical communications and further quantum networks.展开更多
We present a scheme with the multiple-induced transparency windows in a hybrid optomechanical device.By studying the transmission of a probe field through the hybrid device,we show the successive generations of three ...We present a scheme with the multiple-induced transparency windows in a hybrid optomechanical device.By studying the transmission of a probe field through the hybrid device,we show the successive generations of three transparent windows induced by multiple factors including tunneling,optomechanical and qubit-phonon coupling interactions,and analyze the physical mechanism of the induced transparency based on a simplified energy-level diagram of the system.Moreover,the effects of the transition frequency and decay rate of the two-level system on the multiple-induced transparency windows are discussed.We find that the transparency windows can be modulated by the coupling interaction between the qubit and NMR,the decay of qubit and the power of the control field.Therefore,the transmission of the probe field can be coherently adjusted in the hybrid cavity optomechanical device with a two-level system.展开更多
The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information-processing systems. One of the main...The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information-processing systems. One of the main devices required for such interconnects is the electro-optic modulator(EOM). Current EOMs based on electro-optic and electro-absorption effects often are bulky and power-inefficient due to the weak electro-optic properties of their constituent materials. Here, we propose a new mechanism to produce an arbitrary-waveform EOM based on quantum interference, in which both real and imaginary parts of the susceptibility are engineered coherently with super-high efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realized. We expect that such a new type of electro-optic interconnect will have a broadrange of applications, including in optical communications and networks.展开更多
文摘Objective: To explore the effect of salinomycin on the metastasis and invasion of bladder cancer cell line T24 by regulating the related protein expression in the process of epithelialmesenchymal transition(EMT), and to provide experimental basis for the treatment of urological tumors. Methods: The bladder cancer cell line T24 was cultured in vitro. The rat bladder tumor model was established in vivo. The rats were randomized into two groups, among which the rats in the experiment group were given intraperitoneal injection of salinomycin, while the rats in the control group were given intraperitoneal injection of normal saline. The change of tumor cells in the two groups was observed. Transwell was used to detect the cell migration and invasion abilities, Real-time PCR was used to detect the expression of m RNA, while Western-blot was utilized for the determination of the expressions of E-cadherin and vimentin proteins. Results: The metastasis and invasion abilities of serum bladder cancer cell line T24 after salinomycin treatment in the experiment group were significantly reduced when compared with those in the control group, and the tumor metastasis lesions were decreased from an average of 1.59 to 0.6(P<0.05). T24 cell proliferation in the experiment group was gradually decreasing. T24 cell proliferation at 48 h was significantly lower than that at 12 h and 24 h(P<0.05). T24 cell proliferation at 24 h was significantly lower than that at 12 h(P<0.05). T24 cell proliferation at each timing point in the experiment group was significantly lower than that in the control group(P<0.05). The serum m RNA level and E-cadherin expression in the tumor tissues in the experiment group were significantly higher than those in the control group, while vimentin expression level was significantly lower than that in the control group(P<0.05). Conclusions: Salinomycin can suppress the metastasis and invasion of bladder cancer cells, of which the mechanism is probably associated with the inhibition of EMT of tumor cells.
基金Project supported by the Strategic Priority Research Program of China(Grant No.XDB01010200)the National Natural Science Foundation of China(Grant Nos.61605225,11674337,and 11547035)Natural Science Foundation of Shanghai,China(Grant No.16ZR1448400)
文摘We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with an additional mechanical resonator and the additional mechanical resonator can be driven by a weak external coherently mechanical driving field.We show that both the intensity and the phase of the external mechanical driving field can control the propagation of the probe field, including changing the transmission spectrum from double windows to a single-window.Our study also provides an effective way to generate intensity-controllable, narrow-bandwidth transmission spectra, with the probe field modulated from excessive opacity to remarkable amplification.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 11774089, 12034007,11664018, and 61772295)the Natural Science Foundation of Shanghai,China (Grant No. 16ZR1448400)。
文摘We present a scheme of reversible waveform conversion between microwave and optical fields in the hybrid optoelectromechanical system. As an intermediate interface, nanomechanical resonator optomechanically couples both optomechanical cavities in the optical and microwave frequency domains. We find the double-optomechanically induced transparency and achieve coherent signal waveform bi-directional transfer between microwave and optical fields based on quantum interference. In addition, we give an analytical expression of one-to-one correspondence between the microwave field and the optical output field, which intuitively shows the reversible waveform conversion relationship. In particular,by numerical simulations and approximate expression, we demonstrate the conversion effects of the three waveforms and discuss the bi-directional conversion efficiency and the bandwidth. such a hybrid opto-and electro-mechanical device has significant potential functions for electro-optic modulation and waveform conversion of quantum microwave-optical field in optical communications and further quantum networks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61605225 and 11704238)the Natural Science Foundation of Shanghai,China(Grant No.16ZR1448400).
文摘We present a scheme with the multiple-induced transparency windows in a hybrid optomechanical device.By studying the transmission of a probe field through the hybrid device,we show the successive generations of three transparent windows induced by multiple factors including tunneling,optomechanical and qubit-phonon coupling interactions,and analyze the physical mechanism of the induced transparency based on a simplified energy-level diagram of the system.Moreover,the effects of the transition frequency and decay rate of the two-level system on the multiple-induced transparency windows are discussed.We find that the transparency windows can be modulated by the coupling interaction between the qubit and NMR,the decay of qubit and the power of the control field.Therefore,the transmission of the probe field can be coherently adjusted in the hybrid cavity optomechanical device with a two-level system.
基金National Natural Science Foundation of China(NSFC)(11505100,11547035,11575071,11604147,11674337,61605225,91321101)Natural Science Foundation of Shanghai(16ZR1448400)+2 种基金Natural Science Foundation of Shandong Province(ZR2015AQ007)Strategic Priority Research Program(XDB01010200)Hundred Talents Program of the Chinese Academy of Sciences(CAS)(Y321311401)
文摘The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information-processing systems. One of the main devices required for such interconnects is the electro-optic modulator(EOM). Current EOMs based on electro-optic and electro-absorption effects often are bulky and power-inefficient due to the weak electro-optic properties of their constituent materials. Here, we propose a new mechanism to produce an arbitrary-waveform EOM based on quantum interference, in which both real and imaginary parts of the susceptibility are engineered coherently with super-high efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realized. We expect that such a new type of electro-optic interconnect will have a broadrange of applications, including in optical communications and networks.