A real n × n symmetric matrix P is partially positive(PP) for a given index set I ? {1,..., n} if there exists a matrix V such that V(I, :) 0 and P = V VT. We give a characterization of PP-matrices. A semidefinit...A real n × n symmetric matrix P is partially positive(PP) for a given index set I ? {1,..., n} if there exists a matrix V such that V(I, :) 0 and P = V VT. We give a characterization of PP-matrices. A semidefinite algorithm is presented for checking whether a matrix is partially positive or not. Its properties are studied. A PP-decomposition of a matrix can also be obtained if it is partially positive.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11171217)
文摘A real n × n symmetric matrix P is partially positive(PP) for a given index set I ? {1,..., n} if there exists a matrix V such that V(I, :) 0 and P = V VT. We give a characterization of PP-matrices. A semidefinite algorithm is presented for checking whether a matrix is partially positive or not. Its properties are studied. A PP-decomposition of a matrix can also be obtained if it is partially positive.