引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连...引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连接层来减少网络计算参数.研究结果表明:改进后网络的识别精度达到了99.88%,比传统的LeNet-5网络提高了1.71%.展开更多
针对火灾发生时,火灾图像背景复杂、人工特征提取过程繁琐、对火灾图像的识别泛化能力不强、容易出现精度不高、误报和漏报等问题,提出了张量对象特征提取的多线性主成分分析(Multilinear Principal Component Analysis,MPCA)深度学习...针对火灾发生时,火灾图像背景复杂、人工特征提取过程繁琐、对火灾图像的识别泛化能力不强、容易出现精度不高、误报和漏报等问题,提出了张量对象特征提取的多线性主成分分析(Multilinear Principal Component Analysis,MPCA)深度学习算法的火灾图像识别新方法。利用MPCANet建立火灾图像识别模型,通过MPCA算法学习滤波器作为深度学习网络卷积层卷积核,对张量对象的高维图像进行特征提取,并把蜡烛图像和烟花图像作为干扰。通过仿真实验并与其他火灾图像识别方法对比得到提出的图像识别方法识别精度达到了97.5%、误报率1.5%、漏报率1%。实验表明:该方法可以有效解决火灾图像识别存在的问题。展开更多
文摘引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连接层来减少网络计算参数.研究结果表明:改进后网络的识别精度达到了99.88%,比传统的LeNet-5网络提高了1.71%.
文摘针对火灾发生时,火灾图像背景复杂、人工特征提取过程繁琐、对火灾图像的识别泛化能力不强、容易出现精度不高、误报和漏报等问题,提出了张量对象特征提取的多线性主成分分析(Multilinear Principal Component Analysis,MPCA)深度学习算法的火灾图像识别新方法。利用MPCANet建立火灾图像识别模型,通过MPCA算法学习滤波器作为深度学习网络卷积层卷积核,对张量对象的高维图像进行特征提取,并把蜡烛图像和烟花图像作为干扰。通过仿真实验并与其他火灾图像识别方法对比得到提出的图像识别方法识别精度达到了97.5%、误报率1.5%、漏报率1%。实验表明:该方法可以有效解决火灾图像识别存在的问题。