Under oxygen sparged, the synergetic effects of both anodic cathodic electrocatalysis(ACE) and ferrous ion catalyzed anodic cathodic electrocatalysis(FeACE) on phenol degradation were observed in an undivided cell c...Under oxygen sparged, the synergetic effects of both anodic cathodic electrocatalysis(ACE) and ferrous ion catalyzed anodic cathodic electrocatalysis(FeACE) on phenol degradation were observed in an undivided cell composed of a β PbO 2 anode modified with fluorine resin and a nickel chromium titanium alloy net cathode. Oxygen sparging rate, ferrous concentration, and current significantly affect phenol destruction. The phenol was removed by 10%-13% increasingly under FeACE vs . ACE, and by 12%-15% under ACE vs . anodic electrocatalysis(AE). The phenol destruction was due to the formation of hydroxyl oxidant on the surface of lead oxide at the anode and the reduction of oxygen at the cathode.展开更多
基金Supported by the Foundation of Educational Ministry of China(No.986 79) and Zhejiang Natural Science Foundation(No.2 0 0 0 4 3)
文摘Under oxygen sparged, the synergetic effects of both anodic cathodic electrocatalysis(ACE) and ferrous ion catalyzed anodic cathodic electrocatalysis(FeACE) on phenol degradation were observed in an undivided cell composed of a β PbO 2 anode modified with fluorine resin and a nickel chromium titanium alloy net cathode. Oxygen sparging rate, ferrous concentration, and current significantly affect phenol destruction. The phenol was removed by 10%-13% increasingly under FeACE vs . ACE, and by 12%-15% under ACE vs . anodic electrocatalysis(AE). The phenol destruction was due to the formation of hydroxyl oxidant on the surface of lead oxide at the anode and the reduction of oxygen at the cathode.