In view of the existing design challenges for Terahertz(THz)power amplifiers(PAs),the common design methods and the efforts of the State Key Laboratory of Millimeter Wave,Southeast University,China in the development ...In view of the existing design challenges for Terahertz(THz)power amplifiers(PAs),the common design methods and the efforts of the State Key Laboratory of Millimeter Wave,Southeast University,China in the development of silicon-based THz PAs,mainly including silicon-based PAs with operating frequencies covering 100–300 GHz,are summarized in this paper.Particularly,we design an LC-balun-based two-stage differential cascode PA with a center frequency of 150 GHz and an output power of 14 dBm.Based on a Marchand balun,we report a 220 GHz three-stage differential cascode PA with a saturated output power of 9.5 dBm.To further increase the output power of THz PA,based on a four-way differential power combining technique,we report a 211–263 GHz dual-LC-tank-based broadband PA with a recorded 14.7 dBm Psat and 16.4 dB peak gain.All the above circuits are designed in a standard 130 nm silicon germanium(SiGe)BiCMOS process.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62101117 and 62188102in part by ZTE Industry-University-Institute Cooperation Fundsin part by the Project funded by China Postdoctoral Science Foundation under Grant Nos.2021M700763 and 2022T150113.
文摘In view of the existing design challenges for Terahertz(THz)power amplifiers(PAs),the common design methods and the efforts of the State Key Laboratory of Millimeter Wave,Southeast University,China in the development of silicon-based THz PAs,mainly including silicon-based PAs with operating frequencies covering 100–300 GHz,are summarized in this paper.Particularly,we design an LC-balun-based two-stage differential cascode PA with a center frequency of 150 GHz and an output power of 14 dBm.Based on a Marchand balun,we report a 220 GHz three-stage differential cascode PA with a saturated output power of 9.5 dBm.To further increase the output power of THz PA,based on a four-way differential power combining technique,we report a 211–263 GHz dual-LC-tank-based broadband PA with a recorded 14.7 dBm Psat and 16.4 dB peak gain.All the above circuits are designed in a standard 130 nm silicon germanium(SiGe)BiCMOS process.