An electrically activated underwater suction device is designed to form an amazing amount of negative pressure by generating water swirling flow,which can make underwater wall-climbing robot stick to the wall surface ...An electrically activated underwater suction device is designed to form an amazing amount of negative pressure by generating water swirling flow,which can make underwater wall-climbing robot stick to the wall surface allowing a ground clearance.For the purpose of a full understanding of the mechanism of the suction device,a series of experimental tests are carried out and a computational fluid dynamics(CFD)model is established.The results show that the suction force F is consistent between experimental tests and simulations.An insight into the flow phenomena of vortex suction device,including spatial velocity and pressure distribution,is given through numerical simulation analysis.Furthermore,the crucial parameters,i.e.,the rotation speedωand gap clearance h,are studied.Then the relationships of F-ωand F-h are clarified.It reveals that with the increasing of rotation speed,the suction force increases quadratically.And with the increasing of gap clearance,the suction force increases firstly and then decreases,so that a reasonable design interval of gap clearance can be got to obtain the required suction force for the engineering applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11672105)the Natural Science Foundation of Hunan Province(Grant No.2016JJ1009)。
文摘An electrically activated underwater suction device is designed to form an amazing amount of negative pressure by generating water swirling flow,which can make underwater wall-climbing robot stick to the wall surface allowing a ground clearance.For the purpose of a full understanding of the mechanism of the suction device,a series of experimental tests are carried out and a computational fluid dynamics(CFD)model is established.The results show that the suction force F is consistent between experimental tests and simulations.An insight into the flow phenomena of vortex suction device,including spatial velocity and pressure distribution,is given through numerical simulation analysis.Furthermore,the crucial parameters,i.e.,the rotation speedωand gap clearance h,are studied.Then the relationships of F-ωand F-h are clarified.It reveals that with the increasing of rotation speed,the suction force increases quadratically.And with the increasing of gap clearance,the suction force increases firstly and then decreases,so that a reasonable design interval of gap clearance can be got to obtain the required suction force for the engineering applications.