Four cruises were conducted during 2002--2003 in the Changjiang Estuary and adjacent coastal areas. The data presented show a clear coast to open sea gradient in nutrients related to the river inputs. Maximum values o...Four cruises were conducted during 2002--2003 in the Changjiang Estuary and adjacent coastal areas. The data presented show a clear coast to open sea gradient in nutrients related to the river inputs. Maximum values of chlorophyll a were typically observed at intermediate salinities at surface water and coincided with non-conservative decreases in nutrients along the salinity gradient, indicating that removal of nutrients was related to phytoplankton uptake. The seasonal variations of nutrient concentrations were just opposite to those of chlorophyll a, indicating that the seasonal variations of nutrients were mainly controlled by phytoplankton uptake, whereas riverine inputs merely weakened or balanced its extent. During the estuarine mixing, phosphate demonstrated some remobilization during all the four cruises; whereas both conservative and non-conservative behaviors for dissolved inorganic nitrogen and silicate were observed in the study area, indicating that both biotic and abiotic events may affect their behaviors during the estuarine mixing. Under the influence of freshwater inputs with high value of ratio of nitrogen to phosphorus, the estuarine and coastal waters impacted by the Changjiang plume were high ( 〉 30) in ratio of nitrogen to phosphorus, but rates of primary production were apparently not constrained by any kind of nutrient elements. However, the low ( 〈 1 ) ratio of silicate to nitrogen in most of the study area might be linked with the rapidly increasing frequency of harmful algal bloom (HAB) incidents in recent years in the coastal waters impacted by the Changjiang plume.展开更多
A nitrogen and phosphorus dynamic model of mesocosm pelagic ecosystem was established according to the summary and synthesis of the models available, in which seven state variables (DIN, PO4-P, DON, DOP, phytoplankto...A nitrogen and phosphorus dynamic model of mesocosm pelagic ecosystem was established according to the summary and synthesis of the models available, in which seven state variables (DIN, PO4-P, DON, DOP, phytoplankton, zooplankton and detritus) were included. Logically it had five modules--phytoplankton, zooplankton, dissolved inorganic nutrients, dissolved organic nutrients and detritus. The results showed that this model could simulate the variations of DIN, PO4-P, DON, DOP, POC and phytoplankton biomass in pelagic ecosystem in mesocosm properly, based on the site experiment data in the Jiaozhou Bay in the autumn of 1999 and the summer of 2000. Not only the logical structure but also the model parameters were feasible, and about 20 parameters were made to fit for the Jiaozhou Bay during the simulation. All of these are necessary to study the control mechanism of nutrients biogeochemical cycling in the Jiaozhou Bay and other China' s coastal waters.展开更多
Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters. Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copp...Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters. Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copper, lead, zinc and cadmium in the study waters are 1.01 - 6.86, 0. 10 - 0.39,3.17 - 9.12 and 0.011 - 0. 049 μg/dm^3 , respectively. Similar to zinc, the behavior of dissolved copper was essentially conservative, but high scatter has been observed for high salinity samples, which can be attributed to the decomposition or mineralization of organic matter by bacteria. Dissolved lead may have active behavior with an addition at high salinity. Overall concentrations of dissolved cadmium increase with salinity. The mean values of these dissolved metals calculated for the surface waters were higher than those for the middle and bottom ones. External inputs of dissolved heavy metals to the surface waters were the likely explanation for these higher values. The maximum seasonal average values of dissolved copper and zinc were found in summer, reflecting higher amounts of riverine input in this season. In contrast, the maximum seasonal average values of dissolved lead and copper were found in winter and the lowest ones in summer, respectively, which might be asso- ciated with a combination of low concentration with heterogeneous scavenging. Concentrations of these dissolved metals found for the Changjiang Estuary fall in the range observed for the other estuaries but are noticeably higher than those from uncontaminated rivers, except for cadmium. Compared with observations for the Changjiang Estuary in the last two decades, it is clear that the Changjiang estuarine waters has been contaminated with copper, lead, zinc and cadmium during China' s industrialization, but concentrations of them have decreased in the last few years.展开更多
An in vivo fluorescence discrimination technique for phytoplankton population was developed by using Wavelet packet transform, cluster analysis and non-negative least squares. The technique was used to analyze water s...An in vivo fluorescence discrimination technique for phytoplankton population was developed by using Wavelet packet transform, cluster analysis and non-negative least squares. The technique was used to analyze water samples from different sea regions. For simulative mixtures, when dominant species account for 60%, 70%, 80%, 90% at the division level, the correct discrimination ratios (CDRs) are 83.0%, 99.1%, 99.7% and 99.9% with the relative contents of 58.5%, 68.4%, 77.7% and 86.3%, respectively; when the algae dominance are 60%, 70%, 80%, 90%, 100% at the genus level, the CDRs are 86.1%, 94.9%, 95.2%, 96.8% and 96.7%, respectively. For laboratory mixtures, the CDRs are 88.1% and 78.4% at the division and genus level, respectively. For field samples, the CDRs were 91.7% and 80% at the division and genus level, respectively (mesocosm experiments), and the CDRs were 100% and 66.7% at the division and genus level, respectively (Jiaozhou Bay). The fluorometric technique was used to estimate the phytoplankton community composition and relative abundance of different classes for the April 2010 cruise in the Yellow Sea with the results agreeing with those in published papers by other authors.展开更多
The growth of Chlorella marine, Nannochloris oculate, Pyramimonaos sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to chlorobenzene, 1,2-dichlorobenzene, 1,2,3,4-tetrachlorobenzene and pentach-lor...The growth of Chlorella marine, Nannochloris oculate, Pyramimonaos sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to chlorobenzene, 1,2-dichlorobenzene, 1,2,3,4-tetrachlorobenzene and pentach-lorobenzene was tested. The Boltzman equation was used to describe organism growth. The time course for uptake of hydrophobic organic chemicals (HOCs) by aquatic organisms was expressed by incorporating growth and, if desired, the effect of metabolism into the HOC bioconcentration process. The probability of any given concentration of HOCs in the organisms causing a specified toxic endpoint was expressed with a modified Weibull distribution function. The combined bioconcentration and probability equations were tested with data for time course of incubation of algae exposed to chlorinated benzenes (CBs). A set of parameters, including the uptake rate constant k 1, the elimination rate constant k 2 and thereafter the bioconcentration factor on a dry weight basis, BCF D, the critical HOC concentration in the organism resulting in a specified toxic endpoint, C* A, and the spread factor, S, could be obtained by fitting only experimental data for percent growth inhibition(%)-time-CB exposure concentration. The average coefficients of variation within CBs were 15.2% for BCF D, 21.0% for k 1, 18.3% for k 2, 8.1% for C* A and 9.7% for S. The variability in toxicity (such as EC 10, EC 50, EC 90) derived from the model equations agreed well with those experimentally observed.展开更多
In this study we have successfully characterized the fluorescent components of chromophoric dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea in autumn using excitation-emission matrix fluorescen...In this study we have successfully characterized the fluorescent components of chromophoric dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea in autumn using excitation-emission matrix fluorescence spectroscopy(EEMs) combined with parallel factor analysis(PARAFAC).PARAFAC aids the characterization of fluorescence CDOM by decomposing the fluorescence matrices into individual components.Four humic-like components(C1,C2,C3,and C4),one marine biological production component(C6),and two protein-like components(C5 and C7) were identified by PARAFAC.We researched the distributional patterns of fluorescence intensity,regression analyses between salinity,chlorophyll a concentration and fluorescence intensities of individual fluorophore,and regression analysis between salinity and fluorescence intensities percent of individual fluorophore.The results revealed that C2 and C4 showed conservative mixing behavior,while C1 and C3 possessed conservative mixing behavior in high salinity region and additional behavior in low and middle salinity region,which were considered to be derived from riverine and degradation of organic matter from resuspended and/or sinking particles and show non-conservative mixing behavior.In addition to riverine sources,the tryptophan-like C5 may receive widespread addition(likely from photo-degradation or biodegradation),while the most likely sources for the one marine humic-like C6 and tyrosine-like C7 were biological activity and microbial processing of plankton-derived CDOM,which were suggested to be of autochthonous origin and biologically labile.The application of EEM-PARAFAC modeling presents a unique opportunity to observe compositional changes,different mixing behavior and temporal variability in CDOM in the Yellow Sea and the East China Sea.展开更多
基金The National Key Basic Research Program under contract Nos 2001CB409703 and2002CB714008the Natural Science Foundation of Chinaunder contract Nos NSFC-40136020 and NSFC-40376033+1 种基金the Doctoral Foundation under contract No. 20020423006the Key Project of the Ministry of Education of China under contract No.01110
文摘Four cruises were conducted during 2002--2003 in the Changjiang Estuary and adjacent coastal areas. The data presented show a clear coast to open sea gradient in nutrients related to the river inputs. Maximum values of chlorophyll a were typically observed at intermediate salinities at surface water and coincided with non-conservative decreases in nutrients along the salinity gradient, indicating that removal of nutrients was related to phytoplankton uptake. The seasonal variations of nutrient concentrations were just opposite to those of chlorophyll a, indicating that the seasonal variations of nutrients were mainly controlled by phytoplankton uptake, whereas riverine inputs merely weakened or balanced its extent. During the estuarine mixing, phosphate demonstrated some remobilization during all the four cruises; whereas both conservative and non-conservative behaviors for dissolved inorganic nitrogen and silicate were observed in the study area, indicating that both biotic and abiotic events may affect their behaviors during the estuarine mixing. Under the influence of freshwater inputs with high value of ratio of nitrogen to phosphorus, the estuarine and coastal waters impacted by the Changjiang plume were high ( 〉 30) in ratio of nitrogen to phosphorus, but rates of primary production were apparently not constrained by any kind of nutrient elements. However, the low ( 〈 1 ) ratio of silicate to nitrogen in most of the study area might be linked with the rapidly increasing frequency of harmful algal bloom (HAB) incidents in recent years in the coastal waters impacted by the Changjiang plume.
基金The National Natural Science Foundation of China under contract No. 40490262the State Ocean Administration of China"908"Founda-tion under contract No. 908-02-02-03the Science and Technology Development Plan of Qingdao of China under contract No. 06-2-2-7-nsh
文摘A nitrogen and phosphorus dynamic model of mesocosm pelagic ecosystem was established according to the summary and synthesis of the models available, in which seven state variables (DIN, PO4-P, DON, DOP, phytoplankton, zooplankton and detritus) were included. Logically it had five modules--phytoplankton, zooplankton, dissolved inorganic nutrients, dissolved organic nutrients and detritus. The results showed that this model could simulate the variations of DIN, PO4-P, DON, DOP, POC and phytoplankton biomass in pelagic ecosystem in mesocosm properly, based on the site experiment data in the Jiaozhou Bay in the autumn of 1999 and the summer of 2000. Not only the logical structure but also the model parameters were feasible, and about 20 parameters were made to fit for the Jiaozhou Bay during the simulation. All of these are necessary to study the control mechanism of nutrients biogeochemical cycling in the Jiaozhou Bay and other China' s coastal waters.
基金The International Cooperation Project of Science and Technology of China and Britain under contract No.2004DFA03600the National Basic Research Priorities Programme of China under Nos 2001CB409703 and 2002CB714008.
文摘Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters. Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copper, lead, zinc and cadmium in the study waters are 1.01 - 6.86, 0. 10 - 0.39,3.17 - 9.12 and 0.011 - 0. 049 μg/dm^3 , respectively. Similar to zinc, the behavior of dissolved copper was essentially conservative, but high scatter has been observed for high salinity samples, which can be attributed to the decomposition or mineralization of organic matter by bacteria. Dissolved lead may have active behavior with an addition at high salinity. Overall concentrations of dissolved cadmium increase with salinity. The mean values of these dissolved metals calculated for the surface waters were higher than those for the middle and bottom ones. External inputs of dissolved heavy metals to the surface waters were the likely explanation for these higher values. The maximum seasonal average values of dissolved copper and zinc were found in summer, reflecting higher amounts of riverine input in this season. In contrast, the maximum seasonal average values of dissolved lead and copper were found in winter and the lowest ones in summer, respectively, which might be asso- ciated with a combination of low concentration with heterogeneous scavenging. Concentrations of these dissolved metals found for the Changjiang Estuary fall in the range observed for the other estuaries but are noticeably higher than those from uncontaminated rivers, except for cadmium. Compared with observations for the Changjiang Estuary in the last two decades, it is clear that the Changjiang estuarine waters has been contaminated with copper, lead, zinc and cadmium during China' s industrialization, but concentrations of them have decreased in the last few years.
基金supported by the National High-Tech Research and Development Program of China (863 Program) (No. 2009AA063005)the Natural Science Foundation of Shandong Province (No. ZR2009EM001)
文摘An in vivo fluorescence discrimination technique for phytoplankton population was developed by using Wavelet packet transform, cluster analysis and non-negative least squares. The technique was used to analyze water samples from different sea regions. For simulative mixtures, when dominant species account for 60%, 70%, 80%, 90% at the division level, the correct discrimination ratios (CDRs) are 83.0%, 99.1%, 99.7% and 99.9% with the relative contents of 58.5%, 68.4%, 77.7% and 86.3%, respectively; when the algae dominance are 60%, 70%, 80%, 90%, 100% at the genus level, the CDRs are 86.1%, 94.9%, 95.2%, 96.8% and 96.7%, respectively. For laboratory mixtures, the CDRs are 88.1% and 78.4% at the division and genus level, respectively. For field samples, the CDRs were 91.7% and 80% at the division and genus level, respectively (mesocosm experiments), and the CDRs were 100% and 66.7% at the division and genus level, respectively (Jiaozhou Bay). The fluorometric technique was used to estimate the phytoplankton community composition and relative abundance of different classes for the April 2010 cruise in the Yellow Sea with the results agreeing with those in published papers by other authors.
基金supported by National Natural Science Foundation of China(No.49976027,No.49776302,No.40136020)Natural Science Foundation,Shandong(L2000E01)Ministry of Education(01110)and Trans-century Training Program Foundation for the Talents by Ministry of Education.
文摘The growth of Chlorella marine, Nannochloris oculate, Pyramimonaos sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to chlorobenzene, 1,2-dichlorobenzene, 1,2,3,4-tetrachlorobenzene and pentach-lorobenzene was tested. The Boltzman equation was used to describe organism growth. The time course for uptake of hydrophobic organic chemicals (HOCs) by aquatic organisms was expressed by incorporating growth and, if desired, the effect of metabolism into the HOC bioconcentration process. The probability of any given concentration of HOCs in the organisms causing a specified toxic endpoint was expressed with a modified Weibull distribution function. The combined bioconcentration and probability equations were tested with data for time course of incubation of algae exposed to chlorinated benzenes (CBs). A set of parameters, including the uptake rate constant k 1, the elimination rate constant k 2 and thereafter the bioconcentration factor on a dry weight basis, BCF D, the critical HOC concentration in the organism resulting in a specified toxic endpoint, C* A, and the spread factor, S, could be obtained by fitting only experimental data for percent growth inhibition(%)-time-CB exposure concentration. The average coefficients of variation within CBs were 15.2% for BCF D, 21.0% for k 1, 18.3% for k 2, 8.1% for C* A and 9.7% for S. The variability in toxicity (such as EC 10, EC 50, EC 90) derived from the model equations agreed well with those experimentally observed.
基金supported by the National High-Tech Research and Development Program of China(2009AA063005)the National Basic Research Program of China(2010CD428701)
文摘In this study we have successfully characterized the fluorescent components of chromophoric dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea in autumn using excitation-emission matrix fluorescence spectroscopy(EEMs) combined with parallel factor analysis(PARAFAC).PARAFAC aids the characterization of fluorescence CDOM by decomposing the fluorescence matrices into individual components.Four humic-like components(C1,C2,C3,and C4),one marine biological production component(C6),and two protein-like components(C5 and C7) were identified by PARAFAC.We researched the distributional patterns of fluorescence intensity,regression analyses between salinity,chlorophyll a concentration and fluorescence intensities of individual fluorophore,and regression analysis between salinity and fluorescence intensities percent of individual fluorophore.The results revealed that C2 and C4 showed conservative mixing behavior,while C1 and C3 possessed conservative mixing behavior in high salinity region and additional behavior in low and middle salinity region,which were considered to be derived from riverine and degradation of organic matter from resuspended and/or sinking particles and show non-conservative mixing behavior.In addition to riverine sources,the tryptophan-like C5 may receive widespread addition(likely from photo-degradation or biodegradation),while the most likely sources for the one marine humic-like C6 and tyrosine-like C7 were biological activity and microbial processing of plankton-derived CDOM,which were suggested to be of autochthonous origin and biologically labile.The application of EEM-PARAFAC modeling presents a unique opportunity to observe compositional changes,different mixing behavior and temporal variability in CDOM in the Yellow Sea and the East China Sea.