Rational Bezier surface is a widely used surface fitting tool in CAD. When all the weights of a rational B@zier surface go to infinity in the form of power function, the limit of surface is the regular control surface...Rational Bezier surface is a widely used surface fitting tool in CAD. When all the weights of a rational B@zier surface go to infinity in the form of power function, the limit of surface is the regular control surface induced by some lifting function, which is called toric degenerations of rational Bezier surfaces. In this paper, we study on the degenerations of the rational Bezier surface with weights in the exponential function and indicate the difference of our result and the work of Garcia-Puente et al. Through the transformation of weights in the form of exponential function and power function, the regular control surface of rational Bezier surface with weights in the exponential function is defined, which is just the limit of the surface. Compared with the power function, the exponential function approaches infinity faster, which leads to surface with the weights in the form of exponential function degenerates faster.展开更多
Parametric polynomial surface is a fundamental element in CAD systems. Since the most of the classic minimal surfaces are represented by non-parametric polynomial, it is interesting to study the minimal surfaces repre...Parametric polynomial surface is a fundamental element in CAD systems. Since the most of the classic minimal surfaces are represented by non-parametric polynomial, it is interesting to study the minimal surfaces represented in parametric polynomial form. Recently,Ganchev presented the canonical principal parameters for minimal surfaces. The normal curvature of a minimal surface expressed in these parameters determines completely the surface up to a position in the space. Based on this result, in this paper, we study the bi-quintic isothermal minimal surfaces. According to the condition that any minimal isothermal surface is harmonic,we can acquire the relationship of some control points must satisfy. Follow up, we obtain two holomorphic functions f(z) and g(z) which give the Weierstrass representation of the minimal surface. Under the constrains that the minimal surface is bi-quintic, f(z) and g(z) can be divided into two cases. One case is that f(z) is a constant and g(z) is a quadratic polynomial, and another case is that the degree of f(z) and g(z) are 2 and 1 respectively. For these two cases,we transfer the isothermal parameter to canonical principal parameter, and then compute their normal curvatures and analyze the properties of the corresponding minimal surfaces. Moreover,we study some geometric properties of the bi-quintic harmonic surfaces based on the B′ezier representation. Finally, some numerical examples are demonstrated to verify our results.展开更多
基金Supported by the National Natural Science Foundation of China(11671068,11271060,11601064,11290143)Fundamental Research of Civil Aircraft(MJ-F-2012-04)the Fundamental Research Funds for the Central Universities(DUT16LK38)
文摘Rational Bezier surface is a widely used surface fitting tool in CAD. When all the weights of a rational B@zier surface go to infinity in the form of power function, the limit of surface is the regular control surface induced by some lifting function, which is called toric degenerations of rational Bezier surfaces. In this paper, we study on the degenerations of the rational Bezier surface with weights in the exponential function and indicate the difference of our result and the work of Garcia-Puente et al. Through the transformation of weights in the form of exponential function and power function, the regular control surface of rational Bezier surface with weights in the exponential function is defined, which is just the limit of the surface. Compared with the power function, the exponential function approaches infinity faster, which leads to surface with the weights in the form of exponential function degenerates faster.
基金Supported by the National Natural Science Foundation of China(11401077,11671068,11271060)the Fundamental Research of Civil Aircraft of China(MJ-F-2012-04)the Fundamental Research Funds for the Central Universities of China(DUT16LK38)
文摘Parametric polynomial surface is a fundamental element in CAD systems. Since the most of the classic minimal surfaces are represented by non-parametric polynomial, it is interesting to study the minimal surfaces represented in parametric polynomial form. Recently,Ganchev presented the canonical principal parameters for minimal surfaces. The normal curvature of a minimal surface expressed in these parameters determines completely the surface up to a position in the space. Based on this result, in this paper, we study the bi-quintic isothermal minimal surfaces. According to the condition that any minimal isothermal surface is harmonic,we can acquire the relationship of some control points must satisfy. Follow up, we obtain two holomorphic functions f(z) and g(z) which give the Weierstrass representation of the minimal surface. Under the constrains that the minimal surface is bi-quintic, f(z) and g(z) can be divided into two cases. One case is that f(z) is a constant and g(z) is a quadratic polynomial, and another case is that the degree of f(z) and g(z) are 2 and 1 respectively. For these two cases,we transfer the isothermal parameter to canonical principal parameter, and then compute their normal curvatures and analyze the properties of the corresponding minimal surfaces. Moreover,we study some geometric properties of the bi-quintic harmonic surfaces based on the B′ezier representation. Finally, some numerical examples are demonstrated to verify our results.