在开放式空气CO2浓度升高(free-air CO2 enrichment, FACE)条件下,研究了籼稻IIY084与粳稻WYJ23根际土壤矿质元素(Fe、Mn、Cu、Zn、Ca和Mg)有效态含量及其在水稻各组织中的吸收与分配,结合前期稻米矿质元素含量下降的研究结果,探讨了其...在开放式空气CO2浓度升高(free-air CO2 enrichment, FACE)条件下,研究了籼稻IIY084与粳稻WYJ23根际土壤矿质元素(Fe、Mn、Cu、Zn、Ca和Mg)有效态含量及其在水稻各组织中的吸收与分配,结合前期稻米矿质元素含量下降的研究结果,探讨了其下降的机制。结果表明:大气CO2浓度升高,显著增加水稻穗、茎、根和整株生物量,两个品种平均增加19.4%、9.3%、23.4%、16.0%;根际土壤中矿质元素的有效态含量大体呈增加趋势;除Ca吸收量增加外,水稻其他矿质元素总吸收量未发生显著变化;显著促进大部分矿质元素在穗中的吸收与分配,而降低其在茎中的分配比;在穗内有增加大部分矿质元素在壳梗中滞留的趋势,相应地减少其在糙米中的分配比。品种效应分析显示,IIY084的茎和整株生物量,以及穗中Fe、Mn、Cu,叶中Zn、Mg,茎中Cu的吸收量与分配百分数均显著高于WYJ23,而叶中Mn、茎中Fe和根中Cu、Zn则呈相反趋势。可见,大气CO2浓度升高条件下,碳水化合物与矿质元素从植株营养器官到籽粒的不平衡转运以及在壳梗中的滞留可能是导致两水稻品种糙米中矿质元素含量降低的重要原因。展开更多
Studies showed that elevated [CO2] would improve photosynthetic rates and enhance yields of rice;however,few studies have focused on the response of rice lodging,which is a major cause of cereal yield loss and quality...Studies showed that elevated [CO2] would improve photosynthetic rates and enhance yields of rice;however,few studies have focused on the response of rice lodging,which is a major cause of cereal yield loss and quality reduction,under elevated [CO2].In this study,we examined the effects of elevated [CO2] on stem and root lodging using 4 rice cultivars(86Y8,japonica hybrid;LYP9,2-line indica hybrid;variety 9311,type of indica inbred rice,and SY63,3-line indica hybrid) grown under two [CO2] levels:400 and 680 μmol mol-1.Our results indicated that under elevated [CO2],the stem-lodging risk(SLR) of 9311 decreased,while in SY63 the SLR increased,86Y8 and LYP9 were not significantly affected;the risk of root lodging was reduced for all cultivars,because root biomass(instead of root number) and bending strength were increased significantly,and then the increase of anti-lodging ability is far higher than that of self-weight mass moment for all cultivars.These findings suggested that higher [CO2] can enhance the risk of stem-lodging for cultivars with strong-[CO2]-responses,but may not aggravate the root lodging for all rice cultivars.展开更多
Annual wormwood(Artemisia annua L.) is the only viable source of artemisinin,an antimalarial drug.There is a pressing need to optimize production per cultivated area of this important medicinal plant;however,the effec...Annual wormwood(Artemisia annua L.) is the only viable source of artemisinin,an antimalarial drug.There is a pressing need to optimize production per cultivated area of this important medicinal plant;however,the effect of increasing atmospheric carbon dioxide(CO_2) concentration on its growth is still unclear.Therefore,a pot experiment was conducted in a free-air CO2 enrichment(FACE) facility in Yangzhou City,China.Two A.annua varieties,one wild and one cultivated,were grown under ambient(374μmol mol^(-1)) and elevated(577 μmol mol^(-1)) CO_2 levels to determine the dry matter accumulation and macronutrient uptake of aerial parts.The results showed that stem and leaf yields of both A.annua varieties increased significantly under elevated CO_2 due to the enhanced photosynthesis rate.Although nitrogen(N),phosphorus(P),and potassium(K) concentrations in leaves and stems of both varieties decreased under elevated CO_2,total shoot N,P,and K uptake of the two varieties were enhanced and the ratios among the concentrations of these nutrients(N:P,N:K,and P:K) were not affected by elevated CO_2.Overall,our results provided the evidence that elevated CO_2 increased biomass and shoot macronutrient uptake of two A.annua varieties.展开更多
文摘在开放式空气CO2浓度升高(free-air CO2 enrichment, FACE)条件下,研究了籼稻IIY084与粳稻WYJ23根际土壤矿质元素(Fe、Mn、Cu、Zn、Ca和Mg)有效态含量及其在水稻各组织中的吸收与分配,结合前期稻米矿质元素含量下降的研究结果,探讨了其下降的机制。结果表明:大气CO2浓度升高,显著增加水稻穗、茎、根和整株生物量,两个品种平均增加19.4%、9.3%、23.4%、16.0%;根际土壤中矿质元素的有效态含量大体呈增加趋势;除Ca吸收量增加外,水稻其他矿质元素总吸收量未发生显著变化;显著促进大部分矿质元素在穗中的吸收与分配,而降低其在茎中的分配比;在穗内有增加大部分矿质元素在壳梗中滞留的趋势,相应地减少其在糙米中的分配比。品种效应分析显示,IIY084的茎和整株生物量,以及穗中Fe、Mn、Cu,叶中Zn、Mg,茎中Cu的吸收量与分配百分数均显著高于WYJ23,而叶中Mn、茎中Fe和根中Cu、Zn则呈相反趋势。可见,大气CO2浓度升高条件下,碳水化合物与矿质元素从植株营养器官到籽粒的不平衡转运以及在壳梗中的滞留可能是导致两水稻品种糙米中矿质元素含量降低的重要原因。
基金supported by the Ministry of Agriculture,Forestry and Fisheries of Japan project,"Development of technology for mitigation and adaptation to climate change in Agriculture,Forestry and Fisheries"a Grant-in-Aid for Scientific Research (P09515) from the Japan Society forthe Promotion of Science
文摘Studies showed that elevated [CO2] would improve photosynthetic rates and enhance yields of rice;however,few studies have focused on the response of rice lodging,which is a major cause of cereal yield loss and quality reduction,under elevated [CO2].In this study,we examined the effects of elevated [CO2] on stem and root lodging using 4 rice cultivars(86Y8,japonica hybrid;LYP9,2-line indica hybrid;variety 9311,type of indica inbred rice,and SY63,3-line indica hybrid) grown under two [CO2] levels:400 and 680 μmol mol-1.Our results indicated that under elevated [CO2],the stem-lodging risk(SLR) of 9311 decreased,while in SY63 the SLR increased,86Y8 and LYP9 were not significantly affected;the risk of root lodging was reduced for all cultivars,because root biomass(instead of root number) and bending strength were increased significantly,and then the increase of anti-lodging ability is far higher than that of self-weight mass moment for all cultivars.These findings suggested that higher [CO2] can enhance the risk of stem-lodging for cultivars with strong-[CO2]-responses,but may not aggravate the root lodging for all rice cultivars.
基金This research was supported by the National Na- tural Science Foundation of China (No. 41301209), the National Basic Research Program (973 Program) of China (No. 2014CB954500), the Natural Science Foun- dation of Jiangsu Province, China (Nos. BK20131051 and BK20140063), Project of Frontier Fields during the Thirteenth Five-Year Plan Period of the Institute of Soil Science, Chinese Academy of Sciences, and the Agricultural Science and Technology Independent In-novation Fund in Jiangsu Province, China (No. cx13- 5062). The FACE system instruments were supplied by the National Institute of Agro-Environmental Sci- ences and the Agricultural Research Center of Tohoku Region, Japan.
文摘Annual wormwood(Artemisia annua L.) is the only viable source of artemisinin,an antimalarial drug.There is a pressing need to optimize production per cultivated area of this important medicinal plant;however,the effect of increasing atmospheric carbon dioxide(CO_2) concentration on its growth is still unclear.Therefore,a pot experiment was conducted in a free-air CO2 enrichment(FACE) facility in Yangzhou City,China.Two A.annua varieties,one wild and one cultivated,were grown under ambient(374μmol mol^(-1)) and elevated(577 μmol mol^(-1)) CO_2 levels to determine the dry matter accumulation and macronutrient uptake of aerial parts.The results showed that stem and leaf yields of both A.annua varieties increased significantly under elevated CO_2 due to the enhanced photosynthesis rate.Although nitrogen(N),phosphorus(P),and potassium(K) concentrations in leaves and stems of both varieties decreased under elevated CO_2,total shoot N,P,and K uptake of the two varieties were enhanced and the ratios among the concentrations of these nutrients(N:P,N:K,and P:K) were not affected by elevated CO_2.Overall,our results provided the evidence that elevated CO_2 increased biomass and shoot macronutrient uptake of two A.annua varieties.