The German wheat cultivar Ibis has excellent adult plant resistance(APR) to stripe rust in Gansu,a hotspot for stripe rust in China.To elucidate the genetic basis of APR to stripe rust in Ibis,237 F3 lines derived f...The German wheat cultivar Ibis has excellent adult plant resistance(APR) to stripe rust in Gansu,a hotspot for stripe rust in China.To elucidate the genetic basis of APR to stripe rust in Ibis,237 F3 lines derived from the cross Ibis/Huixianhong were evaluated at Tianshui,Gansu,in the 2008-2009 and 2009-2010 cropping seasons,and at Chengdu,Sichuan Province,China,in the 2009-2010 cropping season.Inoculations were conducted with a mixture of several prevalent Pst races in both locations.Maximum disease severity(MDS) data showed a continuous distribution of response,indicating quantitative nature of resistance to stripe rust in Ibis.The broad-sense heritability of MDS was 0.75 based on the mean values averaged across three environments.A total of 723 simple sequence repeat(SSR) markers were used to map the QTL for APR by inclusive composite interval mapping(ICIM).QTLs mapping to chromosomes 2BS and 6BS,designated as QYr.caas-2BS.1 and QYr.caas-6BS.1,respectively,explained 4.1-40.7% of the phenotypic variance in MDS across environments.The major effect QTL QYr.caas-2BS.1,flanked by Xgwm148 and Xwmc360,was consistently detected at all three sites as well as the averaged data over three environments,accounting for 40.7,24.2,5.2 and 29.9% of phenotypic variance,respectively.The molecular markers closely linked to this QTL have potential for use in marker-assisted selection and gene pyramiding to improve the durability of stripe rust resistance in wheat breeding.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. The Chinese wheat cultivar Chuanmai 32 has shown stable resistance to stripe rust for 10 yr in Sichuan Province, a ...Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. The Chinese wheat cultivar Chuanmai 32 has shown stable resistance to stripe rust for 10 yr in Sichuan Province, a hotspot for stripe rust epidemics. The objective of the present study was to map quantitative trait loci (QTL) for adult-plant resistance (APR) to stripe rust in a population of 140 recombinant inbred lines (RILs) derived from Chuanmai 32/Chuanyu 12. Field trials were conducted in Chengdu and Yaan, Sichuan, from 2005 to 2008, providing stripe rust reaction data for 6 environments. 797 simple sequence repeat (SSR) markers were screened for association with stripe rust reaction, initially through bulked segregant analysis (BSA). Based on the mean disease values averaged across environments, the broad-sense heritability of maximum disease severity (MDS) was 0.75. Two QTLs for stripe rust resistance were detected by composite interval mapping (CIM). They were designated QYr.caas-3BL and QYr.caas-3BS and explained from 6.6 to 20.1%, respectively, of the phenotypic variance across environments. QYr.caas-3BL came from Chuanmai 32; QYr.caas-3BS with lower effect was from the susceptible parent Chuanyu 12. Both QTLs appear to be new.展开更多
基金supported by the National Natural Science Foundation of China(30821140351)China Agriculture Research System(CARS-3-1-3)
文摘The German wheat cultivar Ibis has excellent adult plant resistance(APR) to stripe rust in Gansu,a hotspot for stripe rust in China.To elucidate the genetic basis of APR to stripe rust in Ibis,237 F3 lines derived from the cross Ibis/Huixianhong were evaluated at Tianshui,Gansu,in the 2008-2009 and 2009-2010 cropping seasons,and at Chengdu,Sichuan Province,China,in the 2009-2010 cropping season.Inoculations were conducted with a mixture of several prevalent Pst races in both locations.Maximum disease severity(MDS) data showed a continuous distribution of response,indicating quantitative nature of resistance to stripe rust in Ibis.The broad-sense heritability of MDS was 0.75 based on the mean values averaged across three environments.A total of 723 simple sequence repeat(SSR) markers were used to map the QTL for APR by inclusive composite interval mapping(ICIM).QTLs mapping to chromosomes 2BS and 6BS,designated as QYr.caas-2BS.1 and QYr.caas-6BS.1,respectively,explained 4.1-40.7% of the phenotypic variance in MDS across environments.The major effect QTL QYr.caas-2BS.1,flanked by Xgwm148 and Xwmc360,was consistently detected at all three sites as well as the averaged data over three environments,accounting for 40.7,24.2,5.2 and 29.9% of phenotypic variance,respectively.The molecular markers closely linked to this QTL have potential for use in marker-assisted selection and gene pyramiding to improve the durability of stripe rust resistance in wheat breeding.
基金supported by the National Natural Science Foundation of China (30821140351)the Crop Breeding Foundation of Sichuan Province,China+1 种基金the Special Treasury Foundation in Genetic Engineering of Sichuan Provincean Earmarked Fund for the Modern Agro-industry Technology Research System,China
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. The Chinese wheat cultivar Chuanmai 32 has shown stable resistance to stripe rust for 10 yr in Sichuan Province, a hotspot for stripe rust epidemics. The objective of the present study was to map quantitative trait loci (QTL) for adult-plant resistance (APR) to stripe rust in a population of 140 recombinant inbred lines (RILs) derived from Chuanmai 32/Chuanyu 12. Field trials were conducted in Chengdu and Yaan, Sichuan, from 2005 to 2008, providing stripe rust reaction data for 6 environments. 797 simple sequence repeat (SSR) markers were screened for association with stripe rust reaction, initially through bulked segregant analysis (BSA). Based on the mean disease values averaged across environments, the broad-sense heritability of maximum disease severity (MDS) was 0.75. Two QTLs for stripe rust resistance were detected by composite interval mapping (CIM). They were designated QYr.caas-3BL and QYr.caas-3BS and explained from 6.6 to 20.1%, respectively, of the phenotypic variance across environments. QYr.caas-3BL came from Chuanmai 32; QYr.caas-3BS with lower effect was from the susceptible parent Chuanyu 12. Both QTLs appear to be new.