In order to improve the understanding of the role of a canopy opening/gap on the physical environments in a secondary forest in Northeastern China, a case study was conducted in and around a small irregular gap in a m...In order to improve the understanding of the role of a canopy opening/gap on the physical environments in a secondary forest in Northeastern China, a case study was conducted in and around a small irregular gap in a montane secondary forest. The secondary forest, which was severely disturbed by human beings about 50 years ago, was dominated by Quercus mongolica and Fraxinus rhynchophyllaan. Temporal variation in photosynthetic photon flux density (PPFD), air temperature (TA) at 10 cm above the ground, soil temperature (Ts) and soil water content (SWC) at top-layer (0-15 cm) and sub-layer (15-30 cm) were measured from May to September after the second year since the formation of the small gap (the ratios of gap diameter to stand height were less than 0.5) in 2006 respectively. Results indicated that the highest value of PPFD occurred at the northern edge of the gap, particularly at the beginning of the growing season in May. On sunny days, the highest value of PPFD appeared earlier than that on overcast days. Maximum and mean values of TAwere higher in the northern part of the gap, and the minimum values of TAwere at the southern edge of the gap. Soil temperature varied obviously in the gap with the range from 1 to 8 ℃. Maximum values of Ts occurred at the northern part of the gap, which was significantly correlated with the maximum values of TA (R = 0.735, P〈0.05). SWC was higher in the top-layer (0-15 cm) than that in sub-layer (15-30 cm), but the difference of them was not significant (p〉0.05), which might be attributed to the small gap size and the effects of aboveground vegetations. From these results, the maximum of PPFD in the study area occurred at the northern part of the gap, which was consistent with the results observed in north hemisphere, but the occurrence time varied with the differences of the latitudes. The highest values of air and soil temperatures also occurred in the northern part of the gap because they were affected by the radiation. However, the variation of temperature in July was different from other months due to the influence of gap size. And the values of soil water content were neither higher in the gap in the wet season nor lower in the dry season, which might be affected by the gap size and topography the gap located. The variations of light, soil and air temperatures, and soil moisture in this small irregular gap might be related to the effects of the micro-site, which affects the regeneration of plant species.展开更多
Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values o...Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.展开更多
To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0...To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0-150 cm)soil water content(SWC)with time domain reflectometry(TDR),together with the abiotic factors including soil texture,structure. and salinity concentrations were conducted in the Mongolian pine(Pinus sylvestris var.mongolica)plantations on a sandy land.The measurement of SER was based on the 4-probe Wenner configuration method.Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site,which play a key role in affecting the soil electrical resistivity.Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons.The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods.It must be noted that the Wenner configuration method could only provide the mean values of the SWC,and the soil texture,structure, temperature,and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter.Therefore,the results of this study could be applied on a sandy land during the growing seasons only.However, the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.展开更多
In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris v...In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris var. mongolica trees from two provenances (natural forests and plantations). The results indicated that natural tree needles had lower N, P and C concentrations, and higher K concentrations than those of plantation tree needles. For plantation tree needles, ratios of N: P, P. K and N: K increased with tree age before 45 years old; but they were not clear for the natural tree needles. Compared with the conclusions reported on Pinus spp., we found that the foliar N and P concentrations were in the optimal range for both natural and plantation tree needles. This result suggested that N or P might not be the absolute limit factors in plant nutrient for P sylvestris var. mongolica on sandy land. However, foliar K concentrations in both natural and plantation tree needles were much lower than those reported on Pinus spp. (〉4.80 g kg-1).The N: P ratio of natural needles was in the adequate ranges, but N: P ratio of plantation needles was out of the adequate ranges. These results indicated that there was a better balanced nutrition status in the natural forest than in the plantations. If only considering the foliar nutrient concentrations of P sylvestris var. mongolica from different provenances, it might be concluded that the degradation phenomenon of P. sylvestris var. mongolica plantations was not induced by nutrition deficiency of absolute nutrients of N and P, but might be induced by other mineral nutrients or by the effectiveness of N and P nutrients. The unbalanced nutrition status and relatively quick decomposition of needles in the plantations might also contribute to the degradation.展开更多
In order to understand the effects of thinning on microsite conditions and natural regeneration in the larch plantation, thinning experiment was conducted in a 40-year-old Larix olgensis plantation in Qingyuan County ...In order to understand the effects of thinning on microsite conditions and natural regeneration in the larch plantation, thinning experiment was conducted in a 40-year-old Larix olgensis plantation in Qingyuan County in eastern Liaoning Province, China in 2003-2004 Five thinning treatments (0%, 10.2%, 19.8%, 29.7% and 40.3% thinned) were designed on the same site. After thinning, canopy openness and the microsite conditions such as photosynthetic photon flux density (PPFD), soil moisture content, and soil temperature were measured in one growing season. Meanwhile, the investigation of natural regeneration was conducted at the end of the growing season. The results showed that the canopy openness increased with the increase of thinning intensities. PPFD and soil temperature and soil moisture content in different soil layers were positively relative with canopy openness after thinning. The richness of regenerating tree species did not significantly increase (p=0.30) after one growing season since thinning, but the regeneration density and frequency of tree species increased significantly (p〈0.05). In addition, the number of regenerating tree species increased, and the increment was correlated with the characteristics of iudividual tree species. The increasing percentage of regenerating seedlings of the shade-intolerant tree species was more than that of shade-tolerant tree species. Among the investigated regeneration species, the biggest response of seedling emergency to the canopy openness was Phellodendron amurense. This paper confirmed the following conclusions: after thinning, the variety of regenerating tree species was correlative with the characteristics of regenerating tree species, and the distribution of unthinned trees and the site conditions in the investigated larch plantation were the additional factors influencing, the regeneration.展开更多
To determine light requirement and adaptability of Fraxinus mandshurica seedlings, the seasonal variations of photosynthetic variables were measured in 3-year-old seedlings grown under four light levels (100%, 60%, 3...To determine light requirement and adaptability of Fraxinus mandshurica seedlings, the seasonal variations of photosynthetic variables were measured in 3-year-old seedlings grown under four light levels (100%, 60%, 30%, and 15% of full sunlight) with a LI-6400 portable photosynthesis system. The leaf chlorophyll content, special leaf weight, annual height and basal diameter increment of seedlings were also observed. The maximum and minimum values of net photosynthetic rate, maximum rate of carboxylation, and maximum rate of electron transport of F. mandshurica seedlings were detected with 60% and 15% of full sunlight treatments, respectively. With the decrease of light level, both light saturation point and special leaf weight significantly declined (p 0.05), but leaf chlorophyll content significantly increased (p 0.05). Annual height and basal diameter increments of seedlings grown under 60% of full sunlight treatment were significantly greater than those of seedlings under other treatments (p 0.05). It was concluded that F. mandshurica seedlings can adapt to a wide range of light environments from 15% to 100% of full sunlight by adjusting light saturation point, leaf chlorophyll content and special leaf weight. According to the maximum of relative growth, 60% of full sunlight treatment is the optimum light level for the growth of 3-year-old F. mandshurica seedlings.展开更多
One of the most important and frequently studied variable in forests and the most basic element in governing transport processes of airflow is wind speed. The study of wind profile, defined as the change of wind veloc...One of the most important and frequently studied variable in forests and the most basic element in governing transport processes of airflow is wind speed. The study of wind profile, defined as the change of wind velocity with height, and wind ve-locity are important because of tree physiological and developmental responses. Generally, wind profiles above the ground or at a canopy surface follow classical logarithm law, but wind profiles in a single tree and in a forest stand are not logarithmic. This paper summarizes the results of wind profile studies within a single tree, in a forest stand, above the forest canopy and in a forest area from recent research in a coastal pine forest. The results demonstrate that: 1) wind profiles with in a single conifer tree crown showed an exponential function with height, 2) wind profiles in forest stands were able to be expressed by attenuation coefficient of wind, 3) wind profiles over a forest canopy could be determined using profile parameters (friction velocity, rough-ness length and displacement), and 4) for a forest area, the extreme wind speed could be predicted reasonably using the methods developed for the design of buildings. More research will be required to demonstrate: 1) relationships between wind profiles and tree or stand characteristics, 2) the simple methods for predicting wind profile parameters, and 3) the applications of wind profile in studies of tree physiology, forest ecology and management, and the detail ecological effects of wind on tree growth.展开更多
基金This research was supported by National Natural Science Foundation of China (30671669) and "the 100-Young-Researcher Project" of Chinese,Academy of Sciences.
文摘In order to improve the understanding of the role of a canopy opening/gap on the physical environments in a secondary forest in Northeastern China, a case study was conducted in and around a small irregular gap in a montane secondary forest. The secondary forest, which was severely disturbed by human beings about 50 years ago, was dominated by Quercus mongolica and Fraxinus rhynchophyllaan. Temporal variation in photosynthetic photon flux density (PPFD), air temperature (TA) at 10 cm above the ground, soil temperature (Ts) and soil water content (SWC) at top-layer (0-15 cm) and sub-layer (15-30 cm) were measured from May to September after the second year since the formation of the small gap (the ratios of gap diameter to stand height were less than 0.5) in 2006 respectively. Results indicated that the highest value of PPFD occurred at the northern edge of the gap, particularly at the beginning of the growing season in May. On sunny days, the highest value of PPFD appeared earlier than that on overcast days. Maximum and mean values of TAwere higher in the northern part of the gap, and the minimum values of TAwere at the southern edge of the gap. Soil temperature varied obviously in the gap with the range from 1 to 8 ℃. Maximum values of Ts occurred at the northern part of the gap, which was significantly correlated with the maximum values of TA (R = 0.735, P〈0.05). SWC was higher in the top-layer (0-15 cm) than that in sub-layer (15-30 cm), but the difference of them was not significant (p〉0.05), which might be attributed to the small gap size and the effects of aboveground vegetations. From these results, the maximum of PPFD in the study area occurred at the northern part of the gap, which was consistent with the results observed in north hemisphere, but the occurrence time varied with the differences of the latitudes. The highest values of air and soil temperatures also occurred in the northern part of the gap because they were affected by the radiation. However, the variation of temperature in July was different from other months due to the influence of gap size. And the values of soil water content were neither higher in the gap in the wet season nor lower in the dry season, which might be affected by the gap size and topography the gap located. The variations of light, soil and air temperatures, and soil moisture in this small irregular gap might be related to the effects of the micro-site, which affects the regeneration of plant species.
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418), the 100-Young-Researcher-Project of Chinese Academy of Sciences, and by Nature Science Foundation of Liaoning Province (20021006). Acknowledgements We thank Professor Hexin Wang (Dalian University, China), Dr. Professor Zeng Dehui, and the graduate students in research group of Ecology and Management of Secondary Forest (Institute of Applied Ecology, Chinese Academy of Sciences) for their valuable discussion. We are grateful to Mr. Tao Yang (Institute of Applied Ecology, Chinese Academy of Sciences) for his field work. We also thank Dr. Professor Qingcheng Wang (Northeast Forestry University, China), Mr. Menqi Tu and Mr. Yuxiang Ge (Honghuaerji Forestry Bureau, Inner Mongolia, Hulunbeier, China) for providing the convenience during the field investigation.
文摘Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX3-SW-418)the 100 Talents Program of the Chinese Academy of Sciences,China.
文摘To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0-150 cm)soil water content(SWC)with time domain reflectometry(TDR),together with the abiotic factors including soil texture,structure. and salinity concentrations were conducted in the Mongolian pine(Pinus sylvestris var.mongolica)plantations on a sandy land.The measurement of SER was based on the 4-probe Wenner configuration method.Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site,which play a key role in affecting the soil electrical resistivity.Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons.The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods.It must be noted that the Wenner configuration method could only provide the mean values of the SWC,and the soil texture,structure, temperature,and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter.Therefore,the results of this study could be applied on a sandy land during the growing seasons only.However, the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.
基金The research was supported by Innovation Research Project of Chinese Academy of Sciences (KZCX3-SW-418), and the 100 Young Researcher Project of Chinese Academy of Sciences.
文摘In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris var. mongolica trees from two provenances (natural forests and plantations). The results indicated that natural tree needles had lower N, P and C concentrations, and higher K concentrations than those of plantation tree needles. For plantation tree needles, ratios of N: P, P. K and N: K increased with tree age before 45 years old; but they were not clear for the natural tree needles. Compared with the conclusions reported on Pinus spp., we found that the foliar N and P concentrations were in the optimal range for both natural and plantation tree needles. This result suggested that N or P might not be the absolute limit factors in plant nutrient for P sylvestris var. mongolica on sandy land. However, foliar K concentrations in both natural and plantation tree needles were much lower than those reported on Pinus spp. (〉4.80 g kg-1).The N: P ratio of natural needles was in the adequate ranges, but N: P ratio of plantation needles was out of the adequate ranges. These results indicated that there was a better balanced nutrition status in the natural forest than in the plantations. If only considering the foliar nutrient concentrations of P sylvestris var. mongolica from different provenances, it might be concluded that the degradation phenomenon of P. sylvestris var. mongolica plantations was not induced by nutrition deficiency of absolute nutrients of N and P, but might be induced by other mineral nutrients or by the effectiveness of N and P nutrients. The unbalanced nutrition status and relatively quick decomposition of needles in the plantations might also contribute to the degradation.
基金This study was supported by “the 100-Young-Research Project” of Chinese Academy of Sciences and National Natural Science Foundation of China (30371149)
文摘In order to understand the effects of thinning on microsite conditions and natural regeneration in the larch plantation, thinning experiment was conducted in a 40-year-old Larix olgensis plantation in Qingyuan County in eastern Liaoning Province, China in 2003-2004 Five thinning treatments (0%, 10.2%, 19.8%, 29.7% and 40.3% thinned) were designed on the same site. After thinning, canopy openness and the microsite conditions such as photosynthetic photon flux density (PPFD), soil moisture content, and soil temperature were measured in one growing season. Meanwhile, the investigation of natural regeneration was conducted at the end of the growing season. The results showed that the canopy openness increased with the increase of thinning intensities. PPFD and soil temperature and soil moisture content in different soil layers were positively relative with canopy openness after thinning. The richness of regenerating tree species did not significantly increase (p=0.30) after one growing season since thinning, but the regeneration density and frequency of tree species increased significantly (p〈0.05). In addition, the number of regenerating tree species increased, and the increment was correlated with the characteristics of iudividual tree species. The increasing percentage of regenerating seedlings of the shade-intolerant tree species was more than that of shade-tolerant tree species. Among the investigated regeneration species, the biggest response of seedling emergency to the canopy openness was Phellodendron amurense. This paper confirmed the following conclusions: after thinning, the variety of regenerating tree species was correlative with the characteristics of regenerating tree species, and the distribution of unthinned trees and the site conditions in the investigated larch plantation were the additional factors influencing, the regeneration.
基金supported by National Nature Science Foundation of China (30830085)
文摘To determine light requirement and adaptability of Fraxinus mandshurica seedlings, the seasonal variations of photosynthetic variables were measured in 3-year-old seedlings grown under four light levels (100%, 60%, 30%, and 15% of full sunlight) with a LI-6400 portable photosynthesis system. The leaf chlorophyll content, special leaf weight, annual height and basal diameter increment of seedlings were also observed. The maximum and minimum values of net photosynthetic rate, maximum rate of carboxylation, and maximum rate of electron transport of F. mandshurica seedlings were detected with 60% and 15% of full sunlight treatments, respectively. With the decrease of light level, both light saturation point and special leaf weight significantly declined (p 0.05), but leaf chlorophyll content significantly increased (p 0.05). Annual height and basal diameter increments of seedlings grown under 60% of full sunlight treatment were significantly greater than those of seedlings under other treatments (p 0.05). It was concluded that F. mandshurica seedlings can adapt to a wide range of light environments from 15% to 100% of full sunlight by adjusting light saturation point, leaf chlorophyll content and special leaf weight. According to the maximum of relative growth, 60% of full sunlight treatment is the optimum light level for the growth of 3-year-old F. mandshurica seedlings.
基金supported by "the 100-Young-Researcher Project" of Chinese Academy of Sciences(BR0301)National Natural Science Foundation(30371149)
文摘One of the most important and frequently studied variable in forests and the most basic element in governing transport processes of airflow is wind speed. The study of wind profile, defined as the change of wind velocity with height, and wind ve-locity are important because of tree physiological and developmental responses. Generally, wind profiles above the ground or at a canopy surface follow classical logarithm law, but wind profiles in a single tree and in a forest stand are not logarithmic. This paper summarizes the results of wind profile studies within a single tree, in a forest stand, above the forest canopy and in a forest area from recent research in a coastal pine forest. The results demonstrate that: 1) wind profiles with in a single conifer tree crown showed an exponential function with height, 2) wind profiles in forest stands were able to be expressed by attenuation coefficient of wind, 3) wind profiles over a forest canopy could be determined using profile parameters (friction velocity, rough-ness length and displacement), and 4) for a forest area, the extreme wind speed could be predicted reasonably using the methods developed for the design of buildings. More research will be required to demonstrate: 1) relationships between wind profiles and tree or stand characteristics, 2) the simple methods for predicting wind profile parameters, and 3) the applications of wind profile in studies of tree physiology, forest ecology and management, and the detail ecological effects of wind on tree growth.