Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm...Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.展开更多
Background:Gossypol found in cottonseeds is toxic to human beings and monogastric animals and is a primary parameter for the integrated utilization of cottonseed products.It is usually determined by the techniques rel...Background:Gossypol found in cottonseeds is toxic to human beings and monogastric animals and is a primary parameter for the integrated utilization of cottonseed products.It is usually determined by the techniques relied on complex pretreatment procedures and the samples after determination cannot be used in the breeding program,so it is of great importance to predict the gossypol content in cottonseeds rapidly and nondestructively to substitute the traditional analytical method.Results:Gossypol content in cottonseeds was investigated by near-infrared spectroscopy(NIRS)and high-performance liquid chromatography(HPLC).Partial least squares regression,combined with spectral pretreatment methods including Savitzky-Golay smoothing,standard normal variate,multiplicative scatter correction,and first derivate were tested for optimizing the calibration models.NIRS technique was efficient in predicting gossypol content in intact cottonseeds,as revealed by the root-mean-square error of cross-validation(RMSECV),root-mean-square error of prediction(RMSEP),coefficient for determination of prediction(R_(p)^(2)),and residual predictive deviation(RPD)values for all models,being 0.05∼0.07,0.04∼0.06,0.82∼0.92,and 2.3∼3.4,respectively.The optimized model pretreated by Savitzky-Golay smoothing+standard normal variate+first derivate resulted in a good determination of gossypol content in intact cottonseeds.Conclusions:Near-infrared spectroscopy coupled with different spectral pretreatments and partial least squares(PLS)regression has exhibited the feasibility in predicting gossypol content in intact cottonseeds,rapidly and non destructively.It could be used as an alternative method to substitute for traditional one to determi ne the gossypol content in intact cottonseeds.展开更多
Background:Manga nese(Mn)is an essential microelement in cotton seeds,which is usually determined by the techniques relied on hazardous reagents and complex pretreatment procedures.Therefore a rapid,low-cost,and reage...Background:Manga nese(Mn)is an essential microelement in cotton seeds,which is usually determined by the techniques relied on hazardous reagents and complex pretreatment procedures.Therefore a rapid,low-cost,and reagent-free analytical way is demanded to substitute the traditional analytical method.Results:The Mn content in cottonseed meal was investigated by near-infrared spectroscopy(NIRS)and chemometrics techniques.Standard normal variate(SNV)combined with first derivatives(FD)was the optimal spectra pre-treatment method.Monte Carlo uninformative variable elimination(MCUVE)and successive projections algorithm method(SPA)were employed to extract the informative variables from the full NIR spectra.The lin ear and non linear calibration models for cott on seed Mn content were developed.Finally,the optimal model for cottonseed Mn content was obtained by MCUVE-SPA-LSSVM,with root mean squares error of prediction(RMSEP)of 1.994 6,coefficient of determination(R^2)of 0.949 3,and the residual predictive deviation(RPD)of 4.370 5,respectively.Conclusions:The MCUVE-SPA-LSSVM model is accuracy enough to measure the Mn content in cottonseed meal,which can be used as an alter native way to substitute for traditional analytical method.展开更多
基金National Key Technology R&D Program of China(2022YFF1001403)National Science Foundation of China(32101764).
文摘Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.
基金The research work was funded by The National Key Technology R&D Program of China(2016YFD0101404)China Agriculture Research System(CARS-18-25)Jiangsu Collaborative Innovation Center for Modern Crop Production.
文摘Background:Gossypol found in cottonseeds is toxic to human beings and monogastric animals and is a primary parameter for the integrated utilization of cottonseed products.It is usually determined by the techniques relied on complex pretreatment procedures and the samples after determination cannot be used in the breeding program,so it is of great importance to predict the gossypol content in cottonseeds rapidly and nondestructively to substitute the traditional analytical method.Results:Gossypol content in cottonseeds was investigated by near-infrared spectroscopy(NIRS)and high-performance liquid chromatography(HPLC).Partial least squares regression,combined with spectral pretreatment methods including Savitzky-Golay smoothing,standard normal variate,multiplicative scatter correction,and first derivate were tested for optimizing the calibration models.NIRS technique was efficient in predicting gossypol content in intact cottonseeds,as revealed by the root-mean-square error of cross-validation(RMSECV),root-mean-square error of prediction(RMSEP),coefficient for determination of prediction(R_(p)^(2)),and residual predictive deviation(RPD)values for all models,being 0.05∼0.07,0.04∼0.06,0.82∼0.92,and 2.3∼3.4,respectively.The optimized model pretreated by Savitzky-Golay smoothing+standard normal variate+first derivate resulted in a good determination of gossypol content in intact cottonseeds.Conclusions:Near-infrared spectroscopy coupled with different spectral pretreatments and partial least squares(PLS)regression has exhibited the feasibility in predicting gossypol content in intact cottonseeds,rapidly and non destructively.It could be used as an alternative method to substitute for traditional one to determi ne the gossypol content in intact cottonseeds.
基金funded by The National Key Technology R&D program of China(2016YFD0101404)China Agriculture Research System(CARS-18-25)Jiangsu Collaborative Innovation Center for Modern Crop Production
文摘Background:Manga nese(Mn)is an essential microelement in cotton seeds,which is usually determined by the techniques relied on hazardous reagents and complex pretreatment procedures.Therefore a rapid,low-cost,and reagent-free analytical way is demanded to substitute the traditional analytical method.Results:The Mn content in cottonseed meal was investigated by near-infrared spectroscopy(NIRS)and chemometrics techniques.Standard normal variate(SNV)combined with first derivatives(FD)was the optimal spectra pre-treatment method.Monte Carlo uninformative variable elimination(MCUVE)and successive projections algorithm method(SPA)were employed to extract the informative variables from the full NIR spectra.The lin ear and non linear calibration models for cott on seed Mn content were developed.Finally,the optimal model for cottonseed Mn content was obtained by MCUVE-SPA-LSSVM,with root mean squares error of prediction(RMSEP)of 1.994 6,coefficient of determination(R^2)of 0.949 3,and the residual predictive deviation(RPD)of 4.370 5,respectively.Conclusions:The MCUVE-SPA-LSSVM model is accuracy enough to measure the Mn content in cottonseed meal,which can be used as an alter native way to substitute for traditional analytical method.