Zygophyllum xanthoxylum, which belongs to Sarcozygium of Zygophyllaceae, is one of the ecologically important species in Northwest China. In order to understand the pollination system of Z. xanthoxylum, we investigate...Zygophyllum xanthoxylum, which belongs to Sarcozygium of Zygophyllaceae, is one of the ecologically important species in Northwest China. In order to understand the pollination system of Z. xanthoxylum, we investigated the following characteristics of this species in the Urat Desert-grassland Research Station in western Inner Mongolia of China: flowering dynamics, pollen viability, pollen limitation, floral visitors and breeding system. The results showed that the flowering period and flowering peak were different between the wild and managed popula- tions, being longer in the managed population. Z. xanthoxylum was pollen-limited, and pollen limitation was more intense in the wild population than in the managed population. Chalicodoma deserticola (Hymenoptera) was found to be the most frequent pollinator in the wild population, while Anthophora fulvitarsis (Hymenoptera) was the most frequent and effective visitor in the managed population. Out-crossing was dominant in the breeding system and self-pollination just played an assistant role to assure the reproduction of Z. xanthoxylum.展开更多
Understanding the status and distribution of the micronutrient Zn in soils is important for managing plant growth and preventing soil pollution for agricultural irrigation systems in arid and semi-arid regions. In thi...Understanding the status and distribution of the micronutrient Zn in soils is important for managing plant growth and preventing soil pollution for agricultural irrigation systems in arid and semi-arid regions. In this study, a total of 195 soil samples from five soil layers (0-20, 20-40, 40-60, 60-80 and 80-100 cm) in the three land-use types (wasteland, forestland and cropland) after long-term agricultural fertilization and irrigation with Yellow River water were collected in the middle of the Hetao oasis, i.e. the Yongji irrigation sub-oasis. We analyzed the vertical and spatial distributions of Zn content and its relationship with soil properties to determine whether differences of Zn content existed in the soil profiles. The results revealed that the mean content of Zn was 107 mg/kg, 1.9 times higher than the background value (55.7 mg/kg) of the Hetao oasis and much lower than the secondary standard value (300 mg/kg) of the Chinese Environmental Quality Standard for Soils when pH〉7.5. Soil Zn contents were not significantly different and the coefficients of variation of Zn contents were less than 50% in the five soil layers. Soil Zn content was similar from southern to northern parts but increased from western to eastern parts in the sub-oasis. Soil Zn contents did not differ significantly among the three land-use types, but soil total nitrogen (TN) contents were significantly higher in the agriculturally managed forestland and cropland than in the wasteland (P〈0.05). Zn was significantly and positively correlated with TN (F=36.6, P〈0.001). The use of fertilizers may increase the content of Zn in soils, but flooding irrigation may minimize the differences in the spatial distribution of soil Zn content in the whole sub-oasis. This research is of important value for soil pollution control and sustainable land use management in arid and semi-arid regions.展开更多
基金funded by the National Science and Technology Support Program (2011BAC07B02)the National Natural Science Foundation of China (41071185)
文摘Zygophyllum xanthoxylum, which belongs to Sarcozygium of Zygophyllaceae, is one of the ecologically important species in Northwest China. In order to understand the pollination system of Z. xanthoxylum, we investigated the following characteristics of this species in the Urat Desert-grassland Research Station in western Inner Mongolia of China: flowering dynamics, pollen viability, pollen limitation, floral visitors and breeding system. The results showed that the flowering period and flowering peak were different between the wild and managed popula- tions, being longer in the managed population. Z. xanthoxylum was pollen-limited, and pollen limitation was more intense in the wild population than in the managed population. Chalicodoma deserticola (Hymenoptera) was found to be the most frequent pollinator in the wild population, while Anthophora fulvitarsis (Hymenoptera) was the most frequent and effective visitor in the managed population. Out-crossing was dominant in the breeding system and self-pollination just played an assistant role to assure the reproduction of Z. xanthoxylum.
基金financially supported by the Major Science and Technology Special Project of Inner Mongolia(Y439K71001)the National Natural Science Foundation of China(1103Y511521,31270501)
文摘Understanding the status and distribution of the micronutrient Zn in soils is important for managing plant growth and preventing soil pollution for agricultural irrigation systems in arid and semi-arid regions. In this study, a total of 195 soil samples from five soil layers (0-20, 20-40, 40-60, 60-80 and 80-100 cm) in the three land-use types (wasteland, forestland and cropland) after long-term agricultural fertilization and irrigation with Yellow River water were collected in the middle of the Hetao oasis, i.e. the Yongji irrigation sub-oasis. We analyzed the vertical and spatial distributions of Zn content and its relationship with soil properties to determine whether differences of Zn content existed in the soil profiles. The results revealed that the mean content of Zn was 107 mg/kg, 1.9 times higher than the background value (55.7 mg/kg) of the Hetao oasis and much lower than the secondary standard value (300 mg/kg) of the Chinese Environmental Quality Standard for Soils when pH〉7.5. Soil Zn contents were not significantly different and the coefficients of variation of Zn contents were less than 50% in the five soil layers. Soil Zn content was similar from southern to northern parts but increased from western to eastern parts in the sub-oasis. Soil Zn contents did not differ significantly among the three land-use types, but soil total nitrogen (TN) contents were significantly higher in the agriculturally managed forestland and cropland than in the wasteland (P〈0.05). Zn was significantly and positively correlated with TN (F=36.6, P〈0.001). The use of fertilizers may increase the content of Zn in soils, but flooding irrigation may minimize the differences in the spatial distribution of soil Zn content in the whole sub-oasis. This research is of important value for soil pollution control and sustainable land use management in arid and semi-arid regions.