利用常规地面和高空观测资料、地基GPS/MET水汽资料、NCEP再分析资料以及多普勒天气雷达和双偏振雷达资料,对2018年1月3—4日和24—28日先后发生在安徽的两次暴雪过程(以下简称"0103"过程和"0124"过程)的环流背景...利用常规地面和高空观测资料、地基GPS/MET水汽资料、NCEP再分析资料以及多普勒天气雷达和双偏振雷达资料,对2018年1月3—4日和24—28日先后发生在安徽的两次暴雪过程(以下简称"0103"过程和"0124"过程)的环流背景与动力、热力、水汽输送条件进行对比分析,探讨两次过程降水相态转变过程中大气温度变化的异同。结果表明:(1)两次过程都发生在500 h Pa高空槽东移、低层切变线东伸的环流背景下,且在700 h Pa存在西南急流和逆温层;850 h Pa温度场上可见明显温度锋区,大气斜压性强;大气可降水量峰值出现在强降雪时段;暴雪过程伴随暖平流增强,暴雪区位于低层冷平流和高层暖平流叠加区域。(2)两次过程的不同点是,"0103"过程先有暖湿气流增强北上,暖湿输送强,存在一定的不稳定层结,动力辐合区深厚,降雪的对流性特征明显,而"0124"过程先有低层冷空气南下形成冷垫,垂直运动发展厚度、暖湿气流强度均不如"0103"过程;强冷空气在华东沿海形成高压,使西风槽东移较慢,造成"0124"过程降雪持续时间长。(3)双偏振雷达整体上正确识别出了两次过程中降水粒子相态,其降水粒子分类产品对预报员开展降雪短临预报具有一定的参考价值。展开更多
Based on NECP/NCAR reanalysis data and daily temperature data of 743 stations in China, possible causes of winter extreme low temperature events are explored from the perspective of the synoptic-scale transient wave (...Based on NECP/NCAR reanalysis data and daily temperature data of 743 stations in China, possible causes of winter extreme low temperature events are explored from the perspective of the synoptic-scale transient wave (STW) activity. Results suggest that there is a close linkage between STW activity and extreme low temperature events. Firstly, case studies are carried out on the years with the most and least frequent extreme low temperature events. In the winter of 1967, two strong and stable STW trains were maintained over the Eurasian continent, and the strong westerly jet provided a good channel for the propagation of STW. Located in the downstream area of those two STW trains, China was significantly influenced by them and experienced frequent extreme low temperature events. Further analysis suggest that the intensity of the upstream transient wave and the areas where the transient waves reached are completely consistent with the intensity of extreme low temperature and the areas where frequent extreme low temperature event happened, respectively. In contrast, Westerly jet in 2006 was weaker and the path of transient wave propagation was shorter and weaker, resulting in the low frequency of extreme temperature. Secondly, in their long term variations, westerly jet is also consistent with the extreme low temperature frequency. The transient wave path changed before and after the 1980s. Further investigation suggests that transient wave intensities in key areas exhibit in-phase changes with the frequency of extreme low temperature events in the periods of 1959-1979 and 1986-2006. Meanwhile, the main features of transient wave activities in high-frequent years and low-frequent years of extreme low temperature events are similar to those of 1967 and 2006, respectively. Results indicate that winter extreme low temperature events in China have a very close relationship with the transient wave activity, implying the propagation and activity of STW are important factors affecting the winter extreme low temperature events in China. This study can also provide a new clue for better understanding the mechanisms of the extreme temperature events.展开更多
文摘利用常规地面和高空观测资料、地基GPS/MET水汽资料、NCEP再分析资料以及多普勒天气雷达和双偏振雷达资料,对2018年1月3—4日和24—28日先后发生在安徽的两次暴雪过程(以下简称"0103"过程和"0124"过程)的环流背景与动力、热力、水汽输送条件进行对比分析,探讨两次过程降水相态转变过程中大气温度变化的异同。结果表明:(1)两次过程都发生在500 h Pa高空槽东移、低层切变线东伸的环流背景下,且在700 h Pa存在西南急流和逆温层;850 h Pa温度场上可见明显温度锋区,大气斜压性强;大气可降水量峰值出现在强降雪时段;暴雪过程伴随暖平流增强,暴雪区位于低层冷平流和高层暖平流叠加区域。(2)两次过程的不同点是,"0103"过程先有暖湿气流增强北上,暖湿输送强,存在一定的不稳定层结,动力辐合区深厚,降雪的对流性特征明显,而"0124"过程先有低层冷空气南下形成冷垫,垂直运动发展厚度、暖湿气流强度均不如"0103"过程;强冷空气在华东沿海形成高压,使西风槽东移较慢,造成"0124"过程降雪持续时间长。(3)双偏振雷达整体上正确识别出了两次过程中降水粒子相态,其降水粒子分类产品对预报员开展降雪短临预报具有一定的参考价值。
基金supported by National Science and Technology Supporting Program (Grant No.2007BAC29B03)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Based on NECP/NCAR reanalysis data and daily temperature data of 743 stations in China, possible causes of winter extreme low temperature events are explored from the perspective of the synoptic-scale transient wave (STW) activity. Results suggest that there is a close linkage between STW activity and extreme low temperature events. Firstly, case studies are carried out on the years with the most and least frequent extreme low temperature events. In the winter of 1967, two strong and stable STW trains were maintained over the Eurasian continent, and the strong westerly jet provided a good channel for the propagation of STW. Located in the downstream area of those two STW trains, China was significantly influenced by them and experienced frequent extreme low temperature events. Further analysis suggest that the intensity of the upstream transient wave and the areas where the transient waves reached are completely consistent with the intensity of extreme low temperature and the areas where frequent extreme low temperature event happened, respectively. In contrast, Westerly jet in 2006 was weaker and the path of transient wave propagation was shorter and weaker, resulting in the low frequency of extreme temperature. Secondly, in their long term variations, westerly jet is also consistent with the extreme low temperature frequency. The transient wave path changed before and after the 1980s. Further investigation suggests that transient wave intensities in key areas exhibit in-phase changes with the frequency of extreme low temperature events in the periods of 1959-1979 and 1986-2006. Meanwhile, the main features of transient wave activities in high-frequent years and low-frequent years of extreme low temperature events are similar to those of 1967 and 2006, respectively. Results indicate that winter extreme low temperature events in China have a very close relationship with the transient wave activity, implying the propagation and activity of STW are important factors affecting the winter extreme low temperature events in China. This study can also provide a new clue for better understanding the mechanisms of the extreme temperature events.