期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
LNG储运安全保障技术发展与展望
1
作者 朱祖超 崔宝玲 +2 位作者 张光 王超 于佳文 《流体机械》 CSCD 北大核心 2024年第9期84-97,共14页
中国作为液化天然气(LNG)进口大国主要通过LNG运输船运至沿海地区的LNG接收站,经气化后向内陆地区通过管道进行输送,其中,储罐和高压泵等储运关键设备发挥着核心支撑作用。本文阐述了LNG从船运到LNG接收站再进入管线输送过程中所涉及的... 中国作为液化天然气(LNG)进口大国主要通过LNG运输船运至沿海地区的LNG接收站,经气化后向内陆地区通过管道进行输送,其中,储罐和高压泵等储运关键设备发挥着核心支撑作用。本文阐述了LNG从船运到LNG接收站再进入管线输送过程中所涉及的LNG储运技术与关键设备发展状况,分析了LNG船运过程传热与蒸发抑制技术,储存、冷凝及气化等静设备以及长管线输送动力设备等关键设备的研发难点,讨论了LNG管线安全输送保障技术。提出了要进一步加强理论研究和关键技术突破,重点研发LNG储运关键设备,确保LNG储运过程的安全可靠性,实现LNG储运关键设备全部国产化和能源重大工程的自主可控发展。 展开更多
关键词 液化天然气(LNG) LNG储运设备 管线输送 安全保障技术
下载PDF
Cavitation Evolution Around a Twist Hydrofoil by Large Eddy Simulation(LES)with Mesh Adaption
2
作者 WANG Zhengdong LI Linmin +2 位作者 LI Xiaojun YANG Chunye zhu zuchao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期627-636,共10页
The cavitating flow around a Delft Twist-11 hydrofoil is simulated using the large eddy simulation approach.The volume-of-fluid method incorporated with the Schnerr-Sauer cavitation model is utilized to track the wate... The cavitating flow around a Delft Twist-11 hydrofoil is simulated using the large eddy simulation approach.The volume-of-fluid method incorporated with the Schnerr-Sauer cavitation model is utilized to track the water-vapor interface.Adaptive mesh refinement(AMR)is also applied to improve the simulation accuracy automatically.Two refinement levels are conducted to verify the dominance of AMR in predicting cavitating flows.Results show that cavitation features,including the U-type structure of shedding clouds,are consistent with experimental observations.Even a coarse mesh can precisely capture the phase field without increasing the total cell number significantly using mesh adaption.The predicted shedding frequency agrees fairly well with the experimental data under refinement level 2.This study illustrates that AMR is a promising approach to achieve accurate simulations for multiscale cavitating flows within limited computational costs.Finally,the force element method is currently adopted to investigate the lift and drag fluctuations during the evolution of cavitation structure.The mechanisms of lift and drag fluctuations due to cavitation and the interaction between vorticity forces and cavitation are explicitly revealed. 展开更多
关键词 cavitating flow adaptive mesh refinement volume of fluid vorticity force force element method
下载PDF
基于熵产的离心泵流动损失特性研究 被引量:14
3
作者 任芸 朱祖超 +2 位作者 吴登昊 祝之兵 李晓俊 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2021年第2期266-272,共7页
离心泵被广泛的应用于航空航天和石油化工领域,其内部的流动损失特征尚未被完全揭示。为了揭示离心泵内部流动损失机理,本文以1台带诱导轮的离心泵模型为研究对象,采用熵产理论和Q准则对不同转速和工况下的离心泵内部各个部件的流动损... 离心泵被广泛的应用于航空航天和石油化工领域,其内部的流动损失特征尚未被完全揭示。为了揭示离心泵内部流动损失机理,本文以1台带诱导轮的离心泵模型为研究对象,采用熵产理论和Q准则对不同转速和工况下的离心泵内部各个部件的流动损失特性进行定量分析。研究结果表明:局部熵产和壁面熵产值随着转速的增大而增大,与湍流耗散熵产和直接耗散熵产相比,壁面熵产所占的比率最高。腔体、蜗壳和叶轮是离心泵内部能量损失的核心区;叶轮内部的大量涡流和流体对叶片的冲击是造成叶轮能量损失的主要因素;叶顶泄漏涡是引起诱导轮能量损失的主要原因。 展开更多
关键词 离心泵 叶轮 转速 能量损失 熵产 Q准则 涡核 数值计算
下载PDF
离心泵作透平性能预测研究综述及展望 被引量:6
4
作者 林通 朱祖超 +1 位作者 李晓俊 谢京 《排灌机械工程学报》 CSCD 北大核心 2021年第6期562-568,共7页
在化工、石油、矿山等高耗能产业中,存在大量高压流体通过减压阀进行直接排放的现象,造成了大量的能源浪费.采用离心泵反作透平对这部分能量进行回收利用是一种经济且实用的方法,但对离心泵在透平工况下的性能预测是其应用的关键技术及... 在化工、石油、矿山等高耗能产业中,存在大量高压流体通过减压阀进行直接排放的现象,造成了大量的能源浪费.采用离心泵反作透平对这部分能量进行回收利用是一种经济且实用的方法,但对离心泵在透平工况下的性能预测是其应用的关键技术及难点之一.文中系统总结了近年来国内外对离心泵作透平在性能预测方面的研究进展,并对未来的研究方向进行了展望.首先,对离心泵作透平的高效点预测、全工况特性预测方面的研究及进展进行了分类总结和评述:在透平的高效点预测方面,主要采用了经验预估、理论分析、智能算法预测等方法对泵和透平工况下的流量、扬程换算因子进行了计算;在透平的全工况特性预测方面,主要采用了试验拟合、理论分析、数值计算等方法揭示了透平在偏工况与最佳工况下的特性换算关系.最后,探讨了目前研究中存在的一些问题及对未来的研究方向进行了展望. 展开更多
关键词 液力透平 性能预测 研究现状 离心泵 研究展望
下载PDF
低比转速复合叶轮离心泵停机过程水力特性 被引量:7
5
作者 张玉良 朱祖超 +2 位作者 李文广 周兆忠 肖俊建 《农业工程学报》 EI CAS CSCD 北大核心 2018年第12期95-103,共9页
离心泵的瞬态水力特性对于系统的安全可靠运行至关重要,因此掌握其在过渡过程中的水力性能对于优化水力设计、提升可靠性具有重要价值。为探索低比转速带分流叶片的复合叶轮离心泵在突然断电停机过程中的水力特性,在8个不同稳态流量比... 离心泵的瞬态水力特性对于系统的安全可靠运行至关重要,因此掌握其在过渡过程中的水力性能对于优化水力设计、提升可靠性具有重要价值。为探索低比转速带分流叶片的复合叶轮离心泵在突然断电停机过程中的水力特性,在8个不同稳态流量比的情况下,测量了一台比转速为45的复合叶轮离心泵的转速、进出口压力、扬程、流量、扭矩和轴功率等性能参数随时间的动态变化过程。作为对比参考,还同时测量相同叶片形状和尺寸的普通闭式叶轮离心泵停机过程的水力性能。结果表明:随着停机前稳定流量的增大,叶轮停止转动所需的时间越来越短;转速曲线变得更为陡峭,转速下降曲线基本上为四次多项式函数形式。流量在停机初期较为稳定,大大延迟于转速下降历程;随着停机前稳定流量的增大,流量较为平稳的持续时间呈现出轻微缩短的趋势,而流动完全停止所需的时间却越来越长,与转速曲线变化特性完全相反。扬程和出口静压力与转速的变化规律类似。进口静压变化十分剧烈,但在6.0 s左右趋于稳定。轴扭矩与轴功率的变化趋势基本上一致的,均与转速的变化规律类似。性能参数特征时间随流量比的增加而线性减小。同一流量比条件下,性能参数特征时间由长到短的顺序为流量、扬程、转速、扭矩和轴功率。与普通叶轮离心泵相比,在相同流量比条件下,复合叶轮离心泵性能参数的特征时间有延长的趋势,特别是流量、扬程和转速。 展开更多
关键词 离心泵 叶轮 低比转速 过渡过程 停机过程
下载PDF
倾斜蜗舌对多翼离心通风机内部非定常流动及噪声特性的影响 被引量:13
6
作者 王佳君 王政道 +3 位作者 杨徽 朱祖超 张炜 魏义坤 《浙江理工大学学报(自然科学版)》 2022年第3期371-381,共11页
以不同倾斜蜗舌的多翼离心通风机为研究对象,采用数值模拟方法,对风机内部流动特性以及气动噪声进行了非定常计算,讨论了倾斜蜗舌结构对多翼离心通风机内流场和噪声的影响。结果表明:蜗舌附近的压力分布随着蜗舌半径的增大而减小;对蜗... 以不同倾斜蜗舌的多翼离心通风机为研究对象,采用数值模拟方法,对风机内部流动特性以及气动噪声进行了非定常计算,讨论了倾斜蜗舌结构对多翼离心通风机内流场和噪声的影响。结果表明:蜗舌附近的压力分布随着蜗舌半径的增大而减小;对蜗舌处压力脉动和三维涡量的分析表明,倾斜蜗舌结构和合理的蜗舌间隙比减低了蜗舌和蜗壳出口附近局部流动损失;在设计工况下,采用蜗舌倾斜角为14.7°的改进模型,其出口处可降低噪声2.5 dB。因此,采用倾斜蜗舌结构可以有效改善离心通风的流动状况,减低流动损失和降低噪声。 展开更多
关键词 多翼离心通风机 倾斜蜗舌 间隙比 气动性能 噪声特性 局部流动损失
下载PDF
Numerical Simulation and Analysis of Solid-liquid Two-phase Flow in Centrifugal Pump 被引量:56
7
作者 ZHANG Yuliang LI Yi +2 位作者 CUI Baoling zhu zuchao DOU Huashu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期53-60,共8页
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ... The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps. 展开更多
关键词 centrifugal pump solid-liquid two-phase particle property hydraulic performance ABRASION numerical simulation
下载PDF
External Characteristics and Internal Flow Features of a Centrifugal Pump during Rapid Startup 被引量:15
8
作者 zhu zuchao GUO Xiaomei +1 位作者 CUI Baoling LI Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期798-804,共7页
Centrifugal pumps always work under steady conditions,and many researches focus on the steady operation.But transient conditions,such as sudden startup and shutdown,are inevitable.The researches on the inner flow of c... Centrifugal pumps always work under steady conditions,and many researches focus on the steady operation.But transient conditions,such as sudden startup and shutdown,are inevitable.The researches on the inner flow of centrifugal pumps under transient conditions have been done,and they show that the transient operation is different from the steady operation.In order to research the evolution of unsteady flow in a centrifugal pump under transient conditions,and to investigate the mechanism of transient effects by analyzing the unsteady flow in a centrifugal pump,the external characteristic experiment and the internal flow numerical calculation of the centrifugal pump with an open impeller during startup is presented.The relationships of the rotation speed,capacity and head between start-time are obtained by the external characteristics experiment.The numerical calculations under startup process are carried out by using the k-e model and N-S equation.The distribution of velocity and pressure in the inner channel of the tested pump was obtained by choosing fourteen start-time points and twelve geometrical points in the impeller channel during startup.The calculation results show that the velocity and the pressure increase linearly with the start-time before rotation's speed gets steady,then changes almost horizontally after rotation speed becomes steady,then fluctuates until being steady.The internal flow characteristics are in good agreement with the external characteristic experimental results and numerical calculation.The simulation methods and results make the basis for the diagnosis and optimization of under flow in the centrifugal pump during transient operation. 展开更多
关键词 centrifugal pump numerical calculation transient condition STARTUP
下载PDF
Computational Analysis of Centrifugal Pump Delivering Solid-liquid Two-phase Flow during Startup Period 被引量:13
9
作者 ZHANG Yuliang LI Yi +1 位作者 zhu zuchao CUI Baoling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期178-185,共8页
The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all th... The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period. 展开更多
关键词 centrifugal pump solid-liquid two-phase flow STARTUP transient performance
下载PDF
Numerical Simulation and Experimental Research on the Influence of Solid-phase Characteristics on Centrifugal Pump Performance 被引量:11
10
作者 LI Yi zhu zuchao +1 位作者 HE Weiqiang HE Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1184-1189,共6页
The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-ph... The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump. 展开更多
关键词 solid-liquid two phase centrifugal pump performance test numerical simulation
下载PDF
Effect of Cone Angle on the Hydraulic Characteristics of Globe Control Valve 被引量:1
11
作者 LIN Zhe WANG Huijie +3 位作者 SHANG Zhaohui CUI Baoling zhu Chongxi zhu zuchao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期641-648,共8页
Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature re... Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle(β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient(Cv) when the valve opening is larger than 70%. But for the cases less than 70%, Cv curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve. 展开更多
关键词 globe control valve cone angle numerical simulation EXPERIMENT internal and external features
下载PDF
Comprehensive Parameter for Analyzing Condensation in Pneumatic System
12
作者 JIN Yingzi LI Yi +2 位作者 WANG Yanping WANG Jie zhu zuchao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期641-646,共6页
The condensation in pneumatic system is a complex physical phenomenon dependant upon status variation and phase transitions,which are related to the parameters of the compressed air,atmospheric conditions and the dime... The condensation in pneumatic system is a complex physical phenomenon dependant upon status variation and phase transitions,which are related to the parameters of the compressed air,atmospheric conditions and the dimensions of the pneumatic components.Up to now,general research method for this problem is to calculate the status variation and movement quantity by numerical simulation and experiment directly.The comprehensive parameters composed of several different effect factors are rarely used to study the condensation.The composed components and the working conditions of each cylinder are different,a large number of experiments and complex calculations are necessary to determine the condensation.Additionally,the transferability of the determined results is poor.In this paper,the charging and discharging systems of serials cylinder with different structure parameters are studied.The condensation of the systems is observed and the effects of the structure parameters on condensation are analyzed.The changing trends of relative humidity,natural frequency and average speed against the structural parameters of the components during discharge of the pneumatic systems are analyzed.Three comprehensive parameters used to analyze and determine condensation composed by structure parameters of components are proposed,namely,the ratio of the effective area of the discharge tube and the container volume,the square root of the effective area of the discharge tube divided by the product of the container volume and the length of the discharge tube,and the discharge dimensionless tube-volume.The experimental results show that these comprehensive parameters can be used to quantitatively determine whether internal,external or zero condensation occurs in a pneumatic system,and can be also used to quantitatively analyze the experimental data of condensation in pneumatic systems directly.At the same time,the effect factors are too much and the effect relationships are very complex,which causes that the conclusions can't be put forward by using single effect factor in experimental data processing individually.The three obtained comprehensive parameters can be used to resolve the above problem.The proposed parameters can also resolve the problem of poor transferability in determining the state of condensation in pneumatic systems,and provide a novel method for the further study of condensation theory. 展开更多
关键词 pneumatic system CONDENSATION comprehensive parameter structure parameter
下载PDF
深海矿产资源输运与装备发展现状与展望
13
作者 朱祖超 宿向辉 +3 位作者 夏建新 贾浩 吴渴欣 胡建新 《前瞻科技》 2024年第2期59-68,共10页
深海蕴藏着人类社会发展所需的大量重要矿产资源,合理地开发利用可为中国战略性新兴产业发展提供有力支持。长距离管道是实现深海矿产资源从海底向水面输运的主要技术途径,深海极端环境和复杂的介质输运要求导致现有矿产资源管道系统在... 深海蕴藏着人类社会发展所需的大量重要矿产资源,合理地开发利用可为中国战略性新兴产业发展提供有力支持。长距离管道是实现深海矿产资源从海底向水面输运的主要技术途径,深海极端环境和复杂的介质输运要求导致现有矿产资源管道系统在输运效率和可靠性方面存在明显不足。文章主要回顾了国内外深海矿产资源输运研究进展;从输运管道、混输泵和混输系统总体技术3个方面剖析了深海长距离矿产资源输运面临的技术挑战;展望了基于矿物-海水多相流输运系统设计理论与技术、防堵塞抗磨损可调节的混输泵阀等装备研制、建立环保和经济性的智能输运调节模式;在强化复杂多相介质输运基础研究、推动输运管道全水深工程试验和应用、推动深海采矿多相输运流体动力学设计和输运标准体系建设、持续推进多相流体动力学仿真分析软件平台研发方面提出了对策建议。 展开更多
关键词 深海采矿 矿物输运 管道技术 混输泵技术
原文传递
海水淡化反渗透浓差极化数值研究
14
作者 李清玉 范宝鑫 +2 位作者 陈颂英 朱祖超 林培峰 《工程热物理学报》 EI CAS CSCD 北大核心 2024年第6期1730-1734,共5页
为研究海水淡化反渗透中的浓差极化问题,本文构建了新的反渗透LBM模型,能更方便地解决扩散系数较小时的计算不稳定,并与已有文献数据进行对比,验证了模型的准确性。基于该模型,本文进一步模拟分析了不同雷诺数及不同跨膜压差下的反渗透... 为研究海水淡化反渗透中的浓差极化问题,本文构建了新的反渗透LBM模型,能更方便地解决扩散系数较小时的计算不稳定,并与已有文献数据进行对比,验证了模型的准确性。基于该模型,本文进一步模拟分析了不同雷诺数及不同跨膜压差下的反渗透浓差极化现象。结果表明:增加雷诺数可以减小浓差极化现象,增加膜的渗透通量;而增加跨膜压差不仅增加浓差极化,也增加了渗透通量,同时也极大的增加了能耗,最终导致海水淡化的成本激增。因此,在实际应用中,需要综合考虑雷诺数及跨膜压差的大小,设置合理参数以实现海水淡化设备低成本高效率运行。 展开更多
关键词 反渗透 LBM 数值模拟 浓差极化
原文传递
离心泵作透平最佳工况点下的瞬态流动特性分析 被引量:8
15
作者 林通 李晓俊 +2 位作者 朱祖超 谢华东 胡建新 《机械工程学报》 EI CAS CSCD 北大核心 2021年第22期395-405,共11页
为揭示离心泵作透平在最佳工况点下主要过流部件的瞬态流动特性,采用修正的PANS模型对一台比转速为90的离心泵作透平的瞬态流动特性进行数值模拟,通过试验验证数值计算的准确性;根据叶片的进、出口速度三角形计算理论最佳工况点,并对最... 为揭示离心泵作透平在最佳工况点下主要过流部件的瞬态流动特性,采用修正的PANS模型对一台比转速为90的离心泵作透平的瞬态流动特性进行数值模拟,通过试验验证数值计算的准确性;根据叶片的进、出口速度三角形计算理论最佳工况点,并对最佳工况下叶栅内部的流动规律进行预测;对蜗壳、叶轮在最佳工况点下的内部瞬态流动特性进行分析。结果表明,叶轮理论进、出口最佳工况点分别为55 m^(3)/h、108 m^(3)/h,实际最佳工况点为80 m^(3)/h;叶片与蜗壳隔舌的动静干涉会促进隔舌前缘旋涡的脱落,当叶轮前缘与隔舌前缘平齐时,蜗壳内压力脉动强度最低;叶栅内旋涡的脱落频率约为2f_(n),涡量的演变主要由其输运方程中的拉伸项及科氏力项共同主导;吸力面附近涡量的演变对叶轮前、中部流道内的压力脉动影响较大,而叶片尾缘涡量的演变对叶轮出口处的压力脉动影响较大。研究结果可为提高离心泵作透平在余能回收系统中的运行稳定性提供参考。 展开更多
关键词 离心泵 液力透平 最佳工况 瞬态流动特性 数值模拟
原文传递
Abrasion characteristic analyses of solid-liquid two-phase centrifugal pump 被引量:23
16
作者 LI Yi zhu zuchao +1 位作者 HE Zhaohui HE Weiqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第3期283-287,共5页
Based on the solid-liquid two-phase mixture transportation test, the renormalization group (RNG) k-e turbulent model was utilized to simulate the solid-liquid two-phase turbulent flow in a centrifugal pump. By compari... Based on the solid-liquid two-phase mixture transportation test, the renormalization group (RNG) k-e turbulent model was utilized to simulate the solid-liquid two-phase turbulent flow in a centrifugal pump. By comparing the simulated and experimental results, inner flow features were revealed to improve the abrasion characteristic of the solid-liquid two-phase centrifugal pump. The influence of the solid phase on centrifugal pump abrasive performance is small when the particle volume fraction is less than 2.5%. The aggregation degree of the solid particles is enhanced as the particle diameter increases from 0.1 to 1 mm; however, the mixture density on the pressure side is reduced when the particle diameter increases to 1 mm for the impact of inertia. The wear on the hub is most severe for the shear stress on this position; it is also the largest. The wear characteristic is affected greatly by the parameters of the solid phase. The wear chracteristic can be optimized by decreasing the blade outlet angle. In the modified design, the blade angle is different, whereas the other geometric dimensions remain the same. The improved pump is simulated to contrast with the original pump. The results show that the values of mixture density and shear stress both decrease. The wear condition of the blade is improved to a certain extent. 展开更多
关键词 SOLID-LIQUID centrifugal pump numerical simulation abrasive experiment
原文传递
Unstable flow characteristics in a pump-turbine simulated by a modified Partially-Averaged Navier-Stokes method 被引量:7
17
作者 YANG Dandan LUO XianWu +2 位作者 LIU DeMin HUANG RenFang zhu zuchao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第3期406-416,共11页
Positive slope characteristics are very important for the safe and stable operation of a pump-turbine. In this study, the unsteady flows in a pump-turbine at pump mode are investigated numerically. To predict the posi... Positive slope characteristics are very important for the safe and stable operation of a pump-turbine. In this study, the unsteady flows in a pump-turbine at pump mode are investigated numerically. To predict the positive slope characteristics with an improved accuracy, a modified Partially-Averaged Navier-Stokes(MPANS) model is employed to capture the unstable physics in a pump-turbine. It is confirmed that the present numerical method predicts the positive slope characteristics in the pumpturbine fairly well compared with the experimental data. It is noted that at the drooping point of the performance curve(positive slope), there are three sets of rotating stall cells in the flow passages of both the guide vanes and stay vanes. In the guide vane region, the flow is completely shut off by the rotating stall, whereas in the stay vane region, the flow passage is partly blocked at the drooping point. The numerical results also reveal that the remarkable variation and high angle of attack(AOA) values upstream the leading edge of the guide vane contribute to the flow separation at the vane suction side and induce rotating stall in the flow passage within the positive slope region. Furthermore, the propagation of the rotating stall is depicted by both Eulerian and Lagrangian viewpoints: the rotating stall blocks the flow passage between two neighboring guide vanes and pushes the flow toward the leading edge of the subsequent guide vane. The rotating stall cell shifts along the rotational direction with a much lower frequency(0.146 f_n) compared with the runner rotational frequency, f_n. 展开更多
关键词 PUMP-TURBINE positive slope MODIFIED Partially-Averaged Navier-Stokes(MPANS) model angle of attack(AOA) Lagrangian coherent structure(LCS)
原文传递
Unsteady Flow Characteristic of Low-Specific-Speed Centrifugal Pump under Different Flow-Rate Conditions 被引量:7
18
作者 CUI Baoling CHEN Desheng +2 位作者 XU Wenjing JIN Yingzi zhu zuchao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第1期17-23,共7页
To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centri- fugal pump with complex impeller is numerically simulated under different conditions. The RNG r-e tu... To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centri- fugal pump with complex impeller is numerically simulated under different conditions. The RNG r-e turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction be- tween impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pres- sure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency compo- sition. 展开更多
关键词 Centrifugal pump Low-specific-speed Complex impeller UNSTEADY Numerical simulation
原文传递
Numerical Investigation of Pressure Distribution in a Low Specific Speed Centrifugal Pump 被引量:7
19
作者 JIA Xiaoqi CUI Baoling +1 位作者 zhu zuchao YU Xiaoli 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第1期25-33,共9页
To study the pressure distribution of the volute casing, front casing and back casing in a prototype centrifugal pump, the pressure experiments and numerical simulations are carried out at six working conditions in th... To study the pressure distribution of the volute casing, front casing and back casing in a prototype centrifugal pump, the pressure experiments and numerical simulations are carried out at six working conditions in this paper. The experimental results shows that the asymmetry of static pressure distribution on volute casing and front cavity is caused by the tongue of the volute and it may result in high radial and axial resultant force which can cause vibration and noise in the centrifugal pump. With the increasing of flow rote, the asymmetry of static pressure distribution and the magnitude of static pressure values reduce. The numerical results indicate that the pressure fluctuation near the tongue is strongest and it becomes slighter at point away from the tongue. With the increasing of flow rote, the local high=pressure region in impeller passage reduces and the flow becomes smoother accordingly, whereas the fluid speed becomes much higher which may cause further flow losses. The results predicted by numcrical simulation are in coincident with the experimental ones. It shows that the turbulence model for simulating the flow field in centrifugal pumps is feasible. 展开更多
关键词 pressure testing pressure distribution numerical simulation centrifugal pump
原文传递
Anti-cavitation performance of a splitter-bladed inducer under different flow rates and different inlet pressures 被引量:4
20
作者 GUO XiaoMei zhu zuchao +1 位作者 CUI BaoLing HUANG Yong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期2131-2138,共8页
The anti-cavitation performance of a high-speed centrifugal pump with a splitter-bladed inducer is investigated under different flow rates and different inlet pressures. Simulations and external characteristics experi... The anti-cavitation performance of a high-speed centrifugal pump with a splitter-bladed inducer is investigated under different flow rates and different inlet pressures. Simulations and external characteristics experiments are carried out. Static pressure and the vapor volume fraction distributions on the inducer and the impeller of the pump under various operation conditions are obtained. The results show that the cavitation developments on the impeller and on the inducer with the flow rates are reverse, while the development of the inlet pressure on the inducer and the impeller is the same. Cavitation on the impeller increases with the increase of flow rates, and it extends to the near passages with rotating, while cavitation on the inducer is more complex than that on the impeller. Cavitation at the inlet of the inducer decreases with the increase of flow rates, while cavitation at the outlet of the inducer is opposite. The results also show that cavitation development on the impeller and on the inducer with the inlet pressure is the same. Cavitation both decreases with the increase of the inlet pressure at the same flow rate. Furthermore, asymmetric cavitation on the impeller and on the inducer is both observed. And the asymmetric degree of cavitation on the impeller is higher than that on the inducer. 展开更多
关键词 centrifugal pump anti-cavitation characteristics splitter-bladed inducer two phases flow
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部