Fourteen wild species of different sections in the genus Arachis and 24 accessions of the AABB allotetraploid A. hypogaea (cultivated peanut) from several countries which belong to different botanical varieties, wer...Fourteen wild species of different sections in the genus Arachis and 24 accessions of the AABB allotetraploid A. hypogaea (cultivated peanut) from several countries which belong to different botanical varieties, were analyzed by SSR and AFLP marker systems. The assay-units per system needed to distinguish among all the tested accessions were at least five for SSR or two for AFLP. The genetic distance detected by the SSR markers ranged from 0.09 to 0.95, and the mean was 0.73; and the genetic distance detected by the AFLP markers ranged from 0.01 to 0.79 with an average of 0.42. All the tested peanut SSR primer pairs were multilocus ones, and the amplified fragments per SSR marker in each peanut genome ranged from 2 to 15 with the mean of 4.77. The peanut cultivars were closely related to each other, and shared a large numbers of SSR and AFLP fragments. In contrast, the species in the genus Arachis shared few fragments. The results indicated that the cultivated peanut (A. hypogaea L.) varieties could be partitioned into two main groups and four subgroups at the molecular level, and that A. duranensis is one of the wild ancestors of A. hypogaea. The lowest genetic variation was detected between A. cardenasii and A. batizocoi, and the highest was detected between A. pintoi and the species in the section Arachis. The relationships among the botanical varieties in the cultivated peanut (A. hypogaea L.) and among wild species accessions in section Arachis and those in other sections in the genus Arachis were discussed.展开更多
Using primers designed according to the published sequence of rice OsCRY1a gene, we obtained part of the gene fragment by PCR and constructed an RNA interference expression vector with it. To down-regulate the express...Using primers designed according to the published sequence of rice OsCRY1a gene, we obtained part of the gene fragment by PCR and constructed an RNA interference expression vector with it. To down-regulate the expression level of the gene or lead to the loss-of-function of the gene, the vector was then introduced into rice via Agrobacterium-mediated transformation. Based on the performance of the transgenic plants, the functions of the gene were analyzed and deduced. The results indicated that suppressing the expression of the gene retarded flowering for 16 d in rice with the plant height and grain length significantly increasing whereas other important agronomic traits observed remained unchanged apparently.展开更多
基金supported by the Natural Science Foundation Guangxi Province,China(0542027)the National Natural Science Foundation of China(30660094).
文摘Fourteen wild species of different sections in the genus Arachis and 24 accessions of the AABB allotetraploid A. hypogaea (cultivated peanut) from several countries which belong to different botanical varieties, were analyzed by SSR and AFLP marker systems. The assay-units per system needed to distinguish among all the tested accessions were at least five for SSR or two for AFLP. The genetic distance detected by the SSR markers ranged from 0.09 to 0.95, and the mean was 0.73; and the genetic distance detected by the AFLP markers ranged from 0.01 to 0.79 with an average of 0.42. All the tested peanut SSR primer pairs were multilocus ones, and the amplified fragments per SSR marker in each peanut genome ranged from 2 to 15 with the mean of 4.77. The peanut cultivars were closely related to each other, and shared a large numbers of SSR and AFLP fragments. In contrast, the species in the genus Arachis shared few fragments. The results indicated that the cultivated peanut (A. hypogaea L.) varieties could be partitioned into two main groups and four subgroups at the molecular level, and that A. duranensis is one of the wild ancestors of A. hypogaea. The lowest genetic variation was detected between A. cardenasii and A. batizocoi, and the highest was detected between A. pintoi and the species in the section Arachis. The relationships among the botanical varieties in the cultivated peanut (A. hypogaea L.) and among wild species accessions in section Arachis and those in other sections in the genus Arachis were discussed.
文摘Using primers designed according to the published sequence of rice OsCRY1a gene, we obtained part of the gene fragment by PCR and constructed an RNA interference expression vector with it. To down-regulate the expression level of the gene or lead to the loss-of-function of the gene, the vector was then introduced into rice via Agrobacterium-mediated transformation. Based on the performance of the transgenic plants, the functions of the gene were analyzed and deduced. The results indicated that suppressing the expression of the gene retarded flowering for 16 d in rice with the plant height and grain length significantly increasing whereas other important agronomic traits observed remained unchanged apparently.