本文回顾了裂纹尖端张开角(Crack Tip Opening Angle,CTOA)在飞机金属薄壁结构中的应用。主要回答了"为什么CTOA是一个有效的断裂参数"和"CTOA怎样估算工程结构的断裂过程"这两个问题。韧性断裂的微观机理为空洞的...本文回顾了裂纹尖端张开角(Crack Tip Opening Angle,CTOA)在飞机金属薄壁结构中的应用。主要回答了"为什么CTOA是一个有效的断裂参数"和"CTOA怎样估算工程结构的断裂过程"这两个问题。韧性断裂的微观机理为空洞的形核、扩展及合并过程,断裂过程区(Fracture Process Zone,FPZ)包含了上述过程。CTOA实际上是FPZ的整体表征,因此CTOA是一个有效的断裂参数。此外,CTOA准则是一个局部断裂准则,它并不关心FPZ以外区域的状态,这使得它能够估算金属薄壁结构的裂纹扩展过程。展开更多
Tsinghai-Tibet Plateau becomes an important research topic ofglobal tectonics, because of its marvelous thickness and rapiduplifting since Quaternary. By using finite element method, thenumerical simulation is carried...Tsinghai-Tibet Plateau becomes an important research topic ofglobal tectonics, because of its marvelous thickness and rapiduplifting since Quaternary. By using finite element method, thenumerical simulation is carried out for the movement of structurallithosphere. The deformable elements are employed to simulatestructural zones, and the frictional mechanism is introduced toillustrate the characteristic of a zone with a contact crack surface.The boundary conditions are prescribed by the displacements aroundthe pla- teau.展开更多
The operation mechanism of single cross slip multiplication(SCSM)is investigated by studying the response of one dislocation loop expanding in face-centered-cubic(FCC)single crystal using three-dimensional discrete di...The operation mechanism of single cross slip multiplication(SCSM)is investigated by studying the response of one dislocation loop expanding in face-centered-cubic(FCC)single crystal using three-dimensional discrete dislocation dynamic(3D-DDD)simulation.The results show that SCSM can trigger highly correlated dislocation generation in a short time,which may shed some light on understanding the large strain burst observed experimentally.Furthermore,we find that there is a critical stress and material size for the operation of SCSM,which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.展开更多
Dynamic infrared thermal camouflage technology has attracted extensive attention due to its ability to thermally conceal targets in various environmental backgrounds by tuning thermal emission.The use of phase change ...Dynamic infrared thermal camouflage technology has attracted extensive attention due to its ability to thermally conceal targets in various environmental backgrounds by tuning thermal emission.The use of phase change materials(PCMs)offers numerous advantages,including zero static power,rapid modulation rate,and large emissivity tuning range.However,existing PCM solutions still encounter several practical application challenges,such as temperature uniformity,amorphization achievement,and adaptability to different environments.In this paper,we present the design of an electrically controlled metal-insulator-metal thermal emitter based on a PCM metasurface,and numerically investigate its emissivity tunability,physical mechanisms,heat conduction,and thermal camouflage performance across different backgrounds.Furthermore,the influence of the quench rate on amorphization was studied to provide a guidance for evaluating and optimizing device structures.Simulation results reveal that the thermal emitter exhibits a wide spectral emissivity tuning range between 8 and 14μm,considerable quench rates for achieving amorphization,and the ability to provide thermal camouflage across a wide background temperature range.Therefore,it is anticipated that this contribution will promote the development of PCM-based thermal emitters for practical dynamic infrared thermal camouflage technology with broad applications in both civilian and military domains.展开更多
听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究...听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现,当自由场超压峰值低于170 kPa时,鼓膜无明显损伤;当自由场超压峰值高于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能与载荷频率成分密切相关。除了超压峰值,冲击波波形频谱分布对鼓膜破裂程度影响显著。展开更多
In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept o...In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness varia- tion and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the 'equivalent domain integral' method for 3D arbitrary non-planar crack. The maximum en- ergy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.展开更多
The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic cr...The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells.Level set method(LSM)is used to represent the crack surface and define the enriched shape functions.Stress intensity factors(SIFs)are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion.Also,an efficient integration scheme for the CB shell element with cracks is proposed.展开更多
The finite element analysis (FEA) technology by hydraulic-mechanical-damage (HMD) coupling is proposed in this paper for wellbore stability analysis of transversely isotropic rock, developed basing on the recently...The finite element analysis (FEA) technology by hydraulic-mechanical-damage (HMD) coupling is proposed in this paper for wellbore stability analysis of transversely isotropic rock, developed basing on the recently established FEA technology for iso- tropic rock. The finite element (FE) solutions of numerical wellbore model, damage tensor calculation and Pariseau strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the collapse and fracture pressure of laminated rock as shale reservoirs. The classic Blot constitutive for rock as porous medium is introduced to establish a set of FE equations coupling with elastic solid deformation and seepage flow. To be in accord with the inclined wellbore situation, the coordinate transformation for global, wellbore, in-situ stress and transversely isotropic for- mation coordinate systems is established for describing the in-situ stress field and the results in laminated rock. To be in accord with the practical situation, a three-dimensional FIE model is developed, in which several other auxiliary technologies are com- prehensively utilized, e.g., the typical Weibull distribution function for heterogeneous material description and adaptive tech- nology for mesh refinement. The damage tensor calculation technology for transversely isotropic rock are realized from the well-developed continuum damage variable of isotropic rock. The rock is subsequently developed into a novel conceptual and practical model considering the stress and permeability with the damage. The proposed method utilizing Parisean strength cri- terion fully reflects the strength parameters parallel or perpendicular to bedding of the transversely isotropic rock. To this end, an effective and reliable numerically three-step FEA strategy is well established. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the state of pore pressure and stress surrounding wellbore, furthermore to demonstrate the effectiveness and reliability of the instability analysis of wellbore failure region and the safe mud weight computation for collapse and fracture pressure of transversely isotropic rock.展开更多
We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of poly- crystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynami...We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of poly- crystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocafion-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu mi- cro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.展开更多
Computational mechanics has had a profound impact on science and technology over the past five decades.It has numerically transformed much of the classical theory models into practical tools for predicting and underst...Computational mechanics has had a profound impact on science and technology over the past five decades.It has numerically transformed much of the classical theory models into practical tools for predicting and understanding the complex engineering and science system.A short review is given in this paper on some recent progress in computational solid mechanics at multi-scales.展开更多
The finite element analysis(FEA) technology by hydraulic-mechanical-chemical-damage(HMCD) coupling is proposed in this paper for inclined wellbore stability analysis of water-sensitive and laminated rock, developed ba...The finite element analysis(FEA) technology by hydraulic-mechanical-chemical-damage(HMCD) coupling is proposed in this paper for inclined wellbore stability analysis of water-sensitive and laminated rock, developed basing on the recently established FEA technology for transversely isotropic rock with hydraulic-mechanical-damage(HMD) coupling. The chemical activity of the drilling fluid is considered as phenomenological hydration behavior, the moisture content and parameters of rock considering hydration could be determined with time. The finite element(FE) solutions of numerical wellbore model considering the chemical activity of drilling fluid, damage tensor calculation and weak plane strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the time-dependent collapse and fracture pressure of laminated rock as shale reservoirs. A three-dimensional FE model and elastic solid deformation and seepage flow coupled equations are developed, and the damage tensor calculation technology for transversely isotropic rock are realized by introducing effect of the hydration and the stress state under the current load. The proposed method utilizing weak plane strength criterion fully reflects the strength parameters in rock matrix and weak plane. To the end, an effective and reliable numerically three-step FEA strategy is well established for wellbore stability analysis. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the timedependsolutions of pore pressure and stresses, and the evolution region considering the hydration surrounding wellbore,furthermore to compute the collapse cycling time and the safe mud weight for collapse and fracture pressure of transversely isotropic rock.展开更多
文摘本文回顾了裂纹尖端张开角(Crack Tip Opening Angle,CTOA)在飞机金属薄壁结构中的应用。主要回答了"为什么CTOA是一个有效的断裂参数"和"CTOA怎样估算工程结构的断裂过程"这两个问题。韧性断裂的微观机理为空洞的形核、扩展及合并过程,断裂过程区(Fracture Process Zone,FPZ)包含了上述过程。CTOA实际上是FPZ的整体表征,因此CTOA是一个有效的断裂参数。此外,CTOA准则是一个局部断裂准则,它并不关心FPZ以外区域的状态,这使得它能够估算金属薄壁结构的裂纹扩展过程。
文摘Tsinghai-Tibet Plateau becomes an important research topic ofglobal tectonics, because of its marvelous thickness and rapiduplifting since Quaternary. By using finite element method, thenumerical simulation is carried out for the movement of structurallithosphere. The deformable elements are employed to simulatestructural zones, and the frictional mechanism is introduced toillustrate the characteristic of a zone with a contact crack surface.The boundary conditions are prescribed by the displacements aroundthe pla- teau.
基金the National Natural Science Foundation of China under Grant No 11132006the National Basic Research Program of China under Grant No 2010CB631005.
文摘The operation mechanism of single cross slip multiplication(SCSM)is investigated by studying the response of one dislocation loop expanding in face-centered-cubic(FCC)single crystal using three-dimensional discrete dislocation dynamic(3D-DDD)simulation.The results show that SCSM can trigger highly correlated dislocation generation in a short time,which may shed some light on understanding the large strain burst observed experimentally.Furthermore,we find that there is a critical stress and material size for the operation of SCSM,which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.
基金Natural Science Foundation of Shandong Province(ZR2023QF078)Natural Science Foundation of Jiangsu Province(BK20230246)+1 种基金Shandong Higher School Youth Innovation Team Technology ProgramQilu Young Scholars Program of Shandong University。
文摘Dynamic infrared thermal camouflage technology has attracted extensive attention due to its ability to thermally conceal targets in various environmental backgrounds by tuning thermal emission.The use of phase change materials(PCMs)offers numerous advantages,including zero static power,rapid modulation rate,and large emissivity tuning range.However,existing PCM solutions still encounter several practical application challenges,such as temperature uniformity,amorphization achievement,and adaptability to different environments.In this paper,we present the design of an electrically controlled metal-insulator-metal thermal emitter based on a PCM metasurface,and numerically investigate its emissivity tunability,physical mechanisms,heat conduction,and thermal camouflage performance across different backgrounds.Furthermore,the influence of the quench rate on amorphization was studied to provide a guidance for evaluating and optimizing device structures.Simulation results reveal that the thermal emitter exhibits a wide spectral emissivity tuning range between 8 and 14μm,considerable quench rates for achieving amorphization,and the ability to provide thermal camouflage across a wide background temperature range.Therefore,it is anticipated that this contribution will promote the development of PCM-based thermal emitters for practical dynamic infrared thermal camouflage technology with broad applications in both civilian and military domains.
文摘听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现,当自由场超压峰值低于170 kPa时,鼓膜无明显损伤;当自由场超压峰值高于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能与载荷频率成分密切相关。除了超压峰值,冲击波波形频谱分布对鼓膜破裂程度影响显著。
基金supported by the National Natural Science Foundation of China (Grant No. 11011140335)
文摘In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness varia- tion and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the 'equivalent domain integral' method for 3D arbitrary non-planar crack. The maximum en- ergy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.
基金supported by the National Natural Science Foundation of China(Grant No.11372157)
文摘The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells.Level set method(LSM)is used to represent the crack surface and define the enriched shape functions.Stress intensity factors(SIFs)are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion.Also,an efficient integration scheme for the CB shell element with cracks is proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372157&11302115)the Doctoral Fund of Ministry of Education of China(Grant No.20120002110075)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201326)the China Postdoctoral Science Foundation(Grant No.2015M571030)
文摘The finite element analysis (FEA) technology by hydraulic-mechanical-damage (HMD) coupling is proposed in this paper for wellbore stability analysis of transversely isotropic rock, developed basing on the recently established FEA technology for iso- tropic rock. The finite element (FE) solutions of numerical wellbore model, damage tensor calculation and Pariseau strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the collapse and fracture pressure of laminated rock as shale reservoirs. The classic Blot constitutive for rock as porous medium is introduced to establish a set of FE equations coupling with elastic solid deformation and seepage flow. To be in accord with the inclined wellbore situation, the coordinate transformation for global, wellbore, in-situ stress and transversely isotropic for- mation coordinate systems is established for describing the in-situ stress field and the results in laminated rock. To be in accord with the practical situation, a three-dimensional FIE model is developed, in which several other auxiliary technologies are com- prehensively utilized, e.g., the typical Weibull distribution function for heterogeneous material description and adaptive tech- nology for mesh refinement. The damage tensor calculation technology for transversely isotropic rock are realized from the well-developed continuum damage variable of isotropic rock. The rock is subsequently developed into a novel conceptual and practical model considering the stress and permeability with the damage. The proposed method utilizing Parisean strength cri- terion fully reflects the strength parameters parallel or perpendicular to bedding of the transversely isotropic rock. To this end, an effective and reliable numerically three-step FEA strategy is well established. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the state of pore pressure and stress surrounding wellbore, furthermore to demonstrate the effectiveness and reliability of the instability analysis of wellbore failure region and the safe mud weight computation for collapse and fracture pressure of transversely isotropic rock.
基金supported by the National Natural Science Foundation of China(Grant No. 10772096)the National Basic Research Program of China(Grand No. 2010CB631005)
文摘We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of poly- crystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocafion-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu mi- cro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.
文摘Computational mechanics has had a profound impact on science and technology over the past five decades.It has numerically transformed much of the classical theory models into practical tools for predicting and understanding the complex engineering and science system.A short review is given in this paper on some recent progress in computational solid mechanics at multi-scales.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372157,11302115&51608301)the Doctoral Fund of Ministry of Education of China(Grant No.20120002110075)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201326)the China Postdoctoral Science Foundation(Grant No.2015M571030)
文摘The finite element analysis(FEA) technology by hydraulic-mechanical-chemical-damage(HMCD) coupling is proposed in this paper for inclined wellbore stability analysis of water-sensitive and laminated rock, developed basing on the recently established FEA technology for transversely isotropic rock with hydraulic-mechanical-damage(HMD) coupling. The chemical activity of the drilling fluid is considered as phenomenological hydration behavior, the moisture content and parameters of rock considering hydration could be determined with time. The finite element(FE) solutions of numerical wellbore model considering the chemical activity of drilling fluid, damage tensor calculation and weak plane strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the time-dependent collapse and fracture pressure of laminated rock as shale reservoirs. A three-dimensional FE model and elastic solid deformation and seepage flow coupled equations are developed, and the damage tensor calculation technology for transversely isotropic rock are realized by introducing effect of the hydration and the stress state under the current load. The proposed method utilizing weak plane strength criterion fully reflects the strength parameters in rock matrix and weak plane. To the end, an effective and reliable numerically three-step FEA strategy is well established for wellbore stability analysis. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the timedependsolutions of pore pressure and stresses, and the evolution region considering the hydration surrounding wellbore,furthermore to compute the collapse cycling time and the safe mud weight for collapse and fracture pressure of transversely isotropic rock.