Podostemaceae(riverweed family),one of the largest aquatic plant families in the world,comprises about 350 species in 51 genera placed in three subfamilies,Podostemoideae,Weddellinoideae,and Tristichoideae(Koi et al.,...Podostemaceae(riverweed family),one of the largest aquatic plant families in the world,comprises about 350 species in 51 genera placed in three subfamilies,Podostemoideae,Weddellinoideae,and Tristichoideae(Koi et al.,2022).Most Podostemaceae genera(~38)are monotypic or oligotypic,with a high level of endemism(Koi et al.,2018,2022).Members of Podostemaceae adhere to rocks in fast-flowing rivers,streams,or waterfalls in the subtropics and tropics(Koi et al.,2018).As an adaptation to fastrunning currents,the morphological structure of river-weeds tends to be extremely reduced,including a loss or reduction of primary shoots or roots(Koi and Kato,2007).The vegetative mass of these plants resembles lichens or bryophytes,and are thus known commonly as“dream bryophytes”(Philbrick and Retana,1998).Podostemaceae plants flower when the water level drops during the dry season.In recent years,anthropogenic factors and climate change have severely affected river weed habitats,decreasing populations of these plants.展开更多
Fluorescence tomography can obtain a sufficient dataset and optimal three-dimensional imageswhen projections are captured over 360◦ by CCD camera. Herein a non-stop dynamic samplingmode for fluorescence tomography is ...Fluorescence tomography can obtain a sufficient dataset and optimal three-dimensional imageswhen projections are captured over 360◦ by CCD camera. Herein a non-stop dynamic samplingmode for fluorescence tomography is proposed in an attempt to improve the optical measurementspeed of the traditional imaging system and stability of the object to be imaged. A series ofsimulations are carried out to evaluate the accuracy of dataset acquired from the dynamicsampling mode. Reconstruction with the corresponding data obtained in the dynamic-modeprocess is also performed with the phantom. The results demonstrate the feasibility of suchan imaging mode when the angular velocity is set to the appropriate value, thus laying thefoundation for real experiments to verify the superiority in performance of this new imagingmode over the traditional one.展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.32100186 and 32300182)the Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection(Guangxi Normal University),Ministry of Education,China(No.ERESEP2022K03).
文摘Podostemaceae(riverweed family),one of the largest aquatic plant families in the world,comprises about 350 species in 51 genera placed in three subfamilies,Podostemoideae,Weddellinoideae,and Tristichoideae(Koi et al.,2022).Most Podostemaceae genera(~38)are monotypic or oligotypic,with a high level of endemism(Koi et al.,2018,2022).Members of Podostemaceae adhere to rocks in fast-flowing rivers,streams,or waterfalls in the subtropics and tropics(Koi et al.,2018).As an adaptation to fastrunning currents,the morphological structure of river-weeds tends to be extremely reduced,including a loss or reduction of primary shoots or roots(Koi and Kato,2007).The vegetative mass of these plants resembles lichens or bryophytes,and are thus known commonly as“dream bryophytes”(Philbrick and Retana,1998).Podostemaceae plants flower when the water level drops during the dry season.In recent years,anthropogenic factors and climate change have severely affected river weed habitats,decreasing populations of these plants.
文摘Fluorescence tomography can obtain a sufficient dataset and optimal three-dimensional imageswhen projections are captured over 360◦ by CCD camera. Herein a non-stop dynamic samplingmode for fluorescence tomography is proposed in an attempt to improve the optical measurementspeed of the traditional imaging system and stability of the object to be imaged. A series ofsimulations are carried out to evaluate the accuracy of dataset acquired from the dynamicsampling mode. Reconstruction with the corresponding data obtained in the dynamic-modeprocess is also performed with the phantom. The results demonstrate the feasibility of suchan imaging mode when the angular velocity is set to the appropriate value, thus laying thefoundation for real experiments to verify the superiority in performance of this new imagingmode over the traditional one.