The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects, i.e., energy resources and life's origin and evolution. "The earth's prim...The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects, i.e., energy resources and life's origin and evolution. "The earth's primordial abiogenic hydrocarbon theory" and "the serpentinization of abiogenic hydrocarbon theory" are the two mainstream theories in the field of related studies. Ser- pentinizafion generally occurs in slow expanding mid-ocean ridges and continental ophiolites tectonic environment, etc. The abiogenic hydrocarbons and other organic compounds formed through the serpentinization of ultramafic rocks provide energy and raw materials to support chemosynthetic microbial communities, which probably was the most important hydration reac- tion for the origin and early evolution of life. The superposition of biological and abiological processes creates big challenge to the identification of the abiogenic organic materials in serpentinite-hosted ecosystem. Whether abiotic (inorganic) process can form oil and gas resource is a difficult question that has been explored continuously by scientific community for more than a century but has not yet been solved. However, some important progress has been made. The prospecting practice of abiogenic hydrocarbons in commercial gases from the Songliao Basin, China, provides an important example for exploring abiogenic natural gas resources.展开更多
This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from ...This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from different sources in nature. It is demonstrated that the biodegradation or thermodegradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ13C1 value ranges from ?110% to ?50% for microbial gases but from ?50% to ?35% (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δ D values characterized by normal distribution, i.e. δ13C1< δ 13C2< δ 13C3< δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ , and by a positive correlation between the δ 13C and δ D values. Simple carbon-bearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ13C1 heavier than ?30‰ Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ13C1> δ 13C2> δ 13C3> δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ . The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from ?30.5% to ?16.7% with a very narrow δ D range between ?203‰?196‰ These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ C values, and a negative correlation between their δ 13C and δ C values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3. The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 41172133, 41272146, 41103022)
文摘The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects, i.e., energy resources and life's origin and evolution. "The earth's primordial abiogenic hydrocarbon theory" and "the serpentinization of abiogenic hydrocarbon theory" are the two mainstream theories in the field of related studies. Ser- pentinizafion generally occurs in slow expanding mid-ocean ridges and continental ophiolites tectonic environment, etc. The abiogenic hydrocarbons and other organic compounds formed through the serpentinization of ultramafic rocks provide energy and raw materials to support chemosynthetic microbial communities, which probably was the most important hydration reac- tion for the origin and early evolution of life. The superposition of biological and abiological processes creates big challenge to the identification of the abiogenic organic materials in serpentinite-hosted ecosystem. Whether abiotic (inorganic) process can form oil and gas resource is a difficult question that has been explored continuously by scientific community for more than a century but has not yet been solved. However, some important progress has been made. The prospecting practice of abiogenic hydrocarbons in commercial gases from the Songliao Basin, China, provides an important example for exploring abiogenic natural gas resources.
基金Supported by National Natural Science Foundation of China (Grant Nos. 49233060, 40572087)Key Technologies R & D Programme (Grant Nos.96110010602, 2008ZX05008)the Foundation of Chinese Academy of Sciences (Grant No. K2000315)
文摘This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from different sources in nature. It is demonstrated that the biodegradation or thermodegradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ13C1 value ranges from ?110% to ?50% for microbial gases but from ?50% to ?35% (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δ D values characterized by normal distribution, i.e. δ13C1< δ 13C2< δ 13C3< δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ , and by a positive correlation between the δ 13C and δ D values. Simple carbon-bearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ13C1 heavier than ?30‰ Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ13C1> δ 13C2> δ 13C3> δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ . The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from ?30.5% to ?16.7% with a very narrow δ D range between ?203‰?196‰ These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ C values, and a negative correlation between their δ 13C and δ C values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3. The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.