Cavity-enhanced single quantum dots(QDs)are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies.Nevertheless,harnessing the Purcell effect requ...Cavity-enhanced single quantum dots(QDs)are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies.Nevertheless,harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs’emission with the cavity mode,which is challenging for most cavities.Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator,and demonstrated a bright single-photon source derived from a deterministically coupled QD within this microcavity.Leveraging the cavity-membrane structures,we have achieved large spectral tunability via strain tuning.On resonance,a high Purcell factor of~9 is attained.The source delivers single photons with simultaneous high extraction efficiency of 0.58,high purity of 0.956(2)and high indistinguishability of 0.922(4).Together with its compact footprint,our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip,therefore removing a major barrier to the development of solid-state quantum information platforms based on QDs.展开更多
Highly compact lasers with ultra-low threshold and single-mode continuous wave(CW)operation have been a long sought-after component for photonic integrated circuits(PICs).Photonic bound states in the continuum(BICs),d...Highly compact lasers with ultra-low threshold and single-mode continuous wave(CW)operation have been a long sought-after component for photonic integrated circuits(PICs).Photonic bound states in the continuum(BICs),due to their excellent ability of trapping light and enhancing light-matter interaction,have been investigated in lasing configurations combining various BIC cavities and optical gain materials.However,the realization of BIC laser with a highly compact size and an ultra-low CW threshold has remained elusive.We demonstrate room temperature CW BIC lasers in the 1310 nm O-band wavelength range,by fabricating a miniaturized BIC cavity in an InAs/GaAs epitaxial quantum dot(QD)gain membrane.By enabling effective trapping of both light and carriers in all three dimensions,ultra-low threshold of 12μW(0.052 kW cm^(-2))is achieved at room temperature.Single-mode lasing is also realized in cavities as small as only 5×5 unit cells(~2.5×2.5μm^(2) cavity size)with a mode volume of 1.16(λ/n)^(3).The maximum operation temperature reaches 70℃ with a characteristic temperature of T_(0)~93.9 K.With its advantages in terms of a small footprint,ultra-low power consumption,and adaptability for integration,the mini-BIC lasers offer a perspective light source for future PICs aimed at high-capacity optical communications,sensing and quantum information.展开更多
Combining resonant excitation with Purcell-enhanced single quantum dots(QDs)stands out as a prominent strategy for realizing high-performance solid-state single-photon sources.However,optimizing photon extraction effi...Combining resonant excitation with Purcell-enhanced single quantum dots(QDs)stands out as a prominent strategy for realizing high-performance solid-state single-photon sources.However,optimizing photon extraction efficiency requires addressing the challenge of effectively separating the excitation laser from the QDs’emission.Traditionally,this involves polarization filtering,limiting the achievable polarization directions and the scalability of polarized photonic states.In this study,we have successfully tackled this challenge by employing spatially orthogonal resonant excitation of QDs,deterministically coupled to monolithic Fabry–Perot microcavities.Leveraging the planar microcavity structure,we have achieved spectral filter-free single-photon resonant fluorescence.The resulting source produces single photons with a high extraction efficiency of 0.87 and an indistinguishability of 0.963(4).展开更多
基金We acknowledge Jin Liu and Yu-Ming He for the valuable discussions.We are grateful for financial support from the Science and Technology Program of Guangzhou(202103030001)the Innovation Program for Quantum Science and Technology(2021ZD0301400,2021ZD0301605)+4 种基金the National Key R&D Program of Guang-dong Province(2020B0303020001)the National Natural Science Foundation of China(12074442,12074433,12174447)the Natural Science Foundation of Hunan Province(2021JJ20051)the science and technology innovation Program of Hunan Province(2021RC3084)the research program of national university of defense technology(ZK21-01,22-ZZCX-067).
文摘Cavity-enhanced single quantum dots(QDs)are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies.Nevertheless,harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs’emission with the cavity mode,which is challenging for most cavities.Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator,and demonstrated a bright single-photon source derived from a deterministically coupled QD within this microcavity.Leveraging the cavity-membrane structures,we have achieved large spectral tunability via strain tuning.On resonance,a high Purcell factor of~9 is attained.The source delivers single photons with simultaneous high extraction efficiency of 0.58,high purity of 0.956(2)and high indistinguishability of 0.922(4).Together with its compact footprint,our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip,therefore removing a major barrier to the development of solid-state quantum information platforms based on QDs.
基金supported by the National Key R&D Program of China(2018YFB2200201)the Science and Technology Program of Guangzhou(202103030001)+2 种基金the National Natural Science Foundation of China(62135012,12074442)the National Key R&D Program of Guangdong Province(2020B0303020001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01121).
文摘Highly compact lasers with ultra-low threshold and single-mode continuous wave(CW)operation have been a long sought-after component for photonic integrated circuits(PICs).Photonic bound states in the continuum(BICs),due to their excellent ability of trapping light and enhancing light-matter interaction,have been investigated in lasing configurations combining various BIC cavities and optical gain materials.However,the realization of BIC laser with a highly compact size and an ultra-low CW threshold has remained elusive.We demonstrate room temperature CW BIC lasers in the 1310 nm O-band wavelength range,by fabricating a miniaturized BIC cavity in an InAs/GaAs epitaxial quantum dot(QD)gain membrane.By enabling effective trapping of both light and carriers in all three dimensions,ultra-low threshold of 12μW(0.052 kW cm^(-2))is achieved at room temperature.Single-mode lasing is also realized in cavities as small as only 5×5 unit cells(~2.5×2.5μm^(2) cavity size)with a mode volume of 1.16(λ/n)^(3).The maximum operation temperature reaches 70℃ with a characteristic temperature of T_(0)~93.9 K.With its advantages in terms of a small footprint,ultra-low power consumption,and adaptability for integration,the mini-BIC lasers offer a perspective light source for future PICs aimed at high-capacity optical communications,sensing and quantum information.
基金Key R&D Program of Guangdong Province(2020B0303020001)National Natural Science Foundation of China(12074442)+1 种基金Innovation Program for Quantum Science and Technology(2021ZD0301400)Science and Technology Program of Guangzhou(202103030001)。
文摘Combining resonant excitation with Purcell-enhanced single quantum dots(QDs)stands out as a prominent strategy for realizing high-performance solid-state single-photon sources.However,optimizing photon extraction efficiency requires addressing the challenge of effectively separating the excitation laser from the QDs’emission.Traditionally,this involves polarization filtering,limiting the achievable polarization directions and the scalability of polarized photonic states.In this study,we have successfully tackled this challenge by employing spatially orthogonal resonant excitation of QDs,deterministically coupled to monolithic Fabry–Perot microcavities.Leveraging the planar microcavity structure,we have achieved spectral filter-free single-photon resonant fluorescence.The resulting source produces single photons with a high extraction efficiency of 0.87 and an indistinguishability of 0.963(4).