Single molecule detection based on nanopore technology is a very promising approach for medical diagnostics, drug therapy and even DNA sequencing. Compared with other biological nanopores and solid-state nanopores, th...Single molecule detection based on nanopore technology is a very promising approach for medical diagnostics, drug therapy and even DNA sequencing. Compared with other biological nanopores and solid-state nanopores, the glass capillary nanopore has low cost, easy availability and stable mechanical characteristics, thus it has been widely used in the nanopore technology for single molecule detection. In this review, we will focus on the studies of the glass nanopore sensors. The popular glass nanopore fabrication methods would be introduced, and the applications of glass nanopores in the detection of nanoparticles, proteins and DNA molecules would be presented. We hope this review will help widen field of vision and promote the development of the nanopore technology based on the glass capillary nanopores.展开更多
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707605)National Natural Science Foundation of China(Grant No.51375092)+1 种基金the support by the Fundamental Research Funds for the Central Universities(Grant No.2242015R30002)supported by the Fundamental Research Funds for the Central Universities and the Innovative Project for Graduate Students of Jiangsu Province(Grant No.KYLX_0100)
文摘Single molecule detection based on nanopore technology is a very promising approach for medical diagnostics, drug therapy and even DNA sequencing. Compared with other biological nanopores and solid-state nanopores, the glass capillary nanopore has low cost, easy availability and stable mechanical characteristics, thus it has been widely used in the nanopore technology for single molecule detection. In this review, we will focus on the studies of the glass nanopore sensors. The popular glass nanopore fabrication methods would be introduced, and the applications of glass nanopores in the detection of nanoparticles, proteins and DNA molecules would be presented. We hope this review will help widen field of vision and promote the development of the nanopore technology based on the glass capillary nanopores.