期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于EEMD-SVM的液压泵故障诊断 被引量:5
1
作者 袁兵 余佳翰 邹永向 《起重运输机械》 2019年第20期90-95,共6页
为提高利用液压泵振动信号进行故障诊断的准确率和减小诊断时间,采用集合经验模态分解(EEMD)的方式来提取振动信号特征,并将其作为液压泵故障诊断的数据集。在此基础上利用支持向量机(SVM)与深度神经网络(DNN)进行故障诊断,最后通过验... 为提高利用液压泵振动信号进行故障诊断的准确率和减小诊断时间,采用集合经验模态分解(EEMD)的方式来提取振动信号特征,并将其作为液压泵故障诊断的数据集。在此基础上利用支持向量机(SVM)与深度神经网络(DNN)进行故障诊断,最后通过验证数据集检验模型诊断故障的准确程度。结果表明:EEMD-SVM在液压泵故障诊断方面具有较好的性能,与神经网络故障诊断模型相比,支持向量机模型在液压泵故障诊断方面具有更高的准确率和更短的诊断时间。 展开更多
关键词 液压泵 集合经验模态分解 支持向量机 故障诊断
下载PDF
河床抛石荷载对既有桥墩结构的影响分析
2
作者 邹永祥 谢富明 《广东土木与建筑》 2022年第6期77-80,共4页
以深圳市宝安区某河涌开挖综合整治工程为研究背景,应用大型商用有限元软件Midas GTS NX,建立二维数值模型进行数值计算,并收集邻近桥墩的实时变形监测数据,重点考察施工过程中抛石挤淤和堆石荷载作用下既有桥墩的位移变形与地应力变化... 以深圳市宝安区某河涌开挖综合整治工程为研究背景,应用大型商用有限元软件Midas GTS NX,建立二维数值模型进行数值计算,并收集邻近桥墩的实时变形监测数据,重点考察施工过程中抛石挤淤和堆石荷载作用下既有桥墩的位移变形与地应力变化。结果表明,桥墩结构的数值模拟结果与实际监测值基本吻合,堆石荷载对桥墩结构的影响略大于抛石挤淤施工,其中竖向位移极值和水平位移极值分别为1.53 mm、0.21 mm。为保证桥梁正常安全运营,应重点监测桥墩上柱柱顶和淤泥土层边界处,该发现可为今后类似工程问题提供借鉴。 展开更多
关键词 河床抛石 力学响应 桥梁结构 数值模拟 现场实测
下载PDF
Multi-modal fusion for robust hand gesture recognition based on heterogeneous networks
3
作者 zou yongxiang CHENG Long +1 位作者 HAN LiJun LI ZhengWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3219-3230,共12页
Hand gesture recognition has become a vital subject in the fields of human-computer interaction and rehabilitation assessment.This paper presents a multi-modal fusion for hand gesture recognition(MFHG)model,which uses... Hand gesture recognition has become a vital subject in the fields of human-computer interaction and rehabilitation assessment.This paper presents a multi-modal fusion for hand gesture recognition(MFHG)model,which uses two heterogeneous networks to extract and fuse the features of the vision-based motion signals and the surface electromyography(s EMG)signals,respectively.To extract the features of the vision-based motion signals,a graph neural network,named the cumulation graph attention(CGAT)model,is first proposed to characterize the prior knowledge of motion coupling between finger joints.The CGAT model uses the cumulation mechanism to combine the early and late extracted features to improve motion-based hand gesture recognition.For the s EMG signals,a time-frequency convolutional neural network model,named TF-CNN,is proposed to extract both the signals'time-domain and frequency-domain information.To improve the performance of hand gesture recognition,the deep features from multiple modes are merged with an average layer,and then the regularization items containing center loss and the mutual information loss are employed to enhance the robustness of this multi-modal system.Finally,a data set containing the multi-modal signals from seven subjects on different days is built to verify the performance of the multi-modal model.The experimental results indicate that the MFHG can reach 99.96%and 92.46%accuracy on hand gesture recognition in the cases of within-session and cross-day,respectively. 展开更多
关键词 leap motion s EMG MULTI-MODAL graph neural network hand gesture recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部