Gravity and thermal energy are universal phenomena which compete over the stabilization of astrophysical systems.The former induces an inward pressure driving collapse and the latter a stabilizing outward pressure gen...Gravity and thermal energy are universal phenomena which compete over the stabilization of astrophysical systems.The former induces an inward pressure driving collapse and the latter a stabilizing outward pressure generated by random motion and energy dispersion.Since a contracting self-gravitating system is heated up one may wonder why is gravitational collapse not halted in all cases at a sufficient high temperature establishing either a gravo-thermal equilibrium or explosion.Here,based on the equivalence between mass and energy,we show that there always exists a temperature threshold beyond which the gravitation of thermal energy overcomes its stabilizing pressure and the system collapses under the weight of its own heat.展开更多
文摘Gravity and thermal energy are universal phenomena which compete over the stabilization of astrophysical systems.The former induces an inward pressure driving collapse and the latter a stabilizing outward pressure generated by random motion and energy dispersion.Since a contracting self-gravitating system is heated up one may wonder why is gravitational collapse not halted in all cases at a sufficient high temperature establishing either a gravo-thermal equilibrium or explosion.Here,based on the equivalence between mass and energy,we show that there always exists a temperature threshold beyond which the gravitation of thermal energy overcomes its stabilizing pressure and the system collapses under the weight of its own heat.